Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Robert A. Beeler x
Clear All Modify Search
Open access

Robert A. Beeler, Teresa W. Haynes and Kyle Murphy


Let G be a graph with vertex set V and a distribution of pebbles on the vertices of V. A pebbling move consists of removing two pebbles from a vertex and placing one pebble on a neighboring vertex, and a rubbling move consists of removing a pebble from each of two neighbors of a vertex v and placing a pebble on v. We seek an initial placement of a minimum total number of pebbles on the vertices in V, so that no vertex receives more than one pebble and for any given vertex vV, it is possible, by a sequence of pebbling and rubbling moves, to move at least one pebble to v. This minimum number of pebbles is the 1-restricted optimal rubbling number. We determine the 1-restricted optimal rubbling numbers for Cartesian products. We also present bounds on the 1-restricted optimal rubbling number.