Search Results

1 - 2 of 2 items

  • Author: Rajmund Ignatowicz x
Clear All Modify Search


Different types of foundations are used in steel, above-ground cylindrical storage tanks for liquids. If a sand-gravel foundation is used under the entire bottom of the tank or only in the central part of the tank, settlement can be expected, and it increases after many years of operation. The paper presents the typical kinds and types of soil settlements under the bottoms of the tanks, in which different types of foundations were used. Numerical analyses of the effect of the soil settlement on the state of deformations and stresses in steel sheets of the bottom under one of the real tanks, in which different types of foundations and different cases of settlement were assumed. The results of numerical analyses indicated the possibility of evaluating the state of the soil settlement and bottom sheet deformations on the basis of simple measurements of deformations of the lower part of the tank cylinder. These measurements can be very useful in assessing the possible risk of failure of the tank bottom during each period of its operation, as measurements of settlement of the bottom of a filled tank are not feasible in practice. It has been proposed that in each steel tank, the deformation of the cylinder’s sheets should be measured even before the beginning of exploitation, and that in subsequent periodical measurements, the influence of the soil settlement under the tank on the state of the cylinder deformation and bottom’s strain should be assessed more accurately.


The paper presents numerical calculations of the influence of implementation technology for underpinning the footing on settlement, with the use of finite element method. Three cases of underpinning methods were taken for calculations, depending on the diameter of the jet grouting column and the order of works. The intensity of settlement of the base of the footing foundation is significantly influenced by the growth of Young’s modulus and the jet grouting column with time, until its complete curing and reaching final technological parameters.