Search Results

1 - 6 of 6 items

  • Author: Rajesh Mishra x
Clear All Modify Search

Geometry of Coronal Mass Ejections in the Context of Recent Solar Cycle

Coronal mass ejections (CMEs) disrupt the flow of the solar wind and produce disturbances that strike the Earth with sometimes catastrophic results. These ejections are often associated with solar flares and prominence eruptions, but they can also occur in the absence of either of these processes. The frequency of CMEs varies with the sunspot cycle. At the solar minimum we observed about one CME a week. Near the solar maximum we could observe an average of 2 to 3 CMEs per day. We have studied different CME characteristics based on the observation with Large Angle and Spectrometric Coronagraph (LASCO) on board of the Solar and Heliospheric Observatory (SOHO) space craft during the period 1996-2006. It is noteworthy that the rate of occurrence of class B CMEs (with the measurement position angle (MPA) in the range 200°-360°) is greater than that for class A CMEs (the MPA in the range 50°-200°). The CME occurrence spectrum for both classes follows the trend of the phase of solar cycle, and the maximum number of both type CMEs seems to occur during the maximum solar activity. It is also observed that the maximum numbers of class A, class B CMEs are in a speed range of 0-500 km/s. We have observed that the maximum number of class A, class B CMEs occurred in the apparent angular width range 0°-90°. It is also found that the maximum numbers of class A and class B CMEs occur when the position angle ranges in 5°-100° and 250°-300° respectively.

Cosmic Ray Nucleonic Intensity in Low-Amplitude Days During the Passage of High-Speed Solar Wind Streams

One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically.

Solar Cycle Variation of Cosmic ray Intensity along with Interplanetary and Solar Wind Plasma Parameters

Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V' B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V' B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23.

Abstract

The air flow and conjugate heat transfer through the fabric was investigated numerically. The objective of this paper is to study the thermal insulation of fabrics under heat convection or the heat loss of human body under different conditions (fabric structure and contact conditions between the human skin and the fabric). The numerical simulations were performed in laminar flow regime at constant skin temperature (310 K) and constant air flow temperature (273 K) at a speed of 5 m/s. Some important parameters such as heat flux through the fabrics, heat transfer coefficient, and Nusselt number were evaluated. The results showed that the heat loss from human body (the heat transfer coefficient) was smallest or the thermal insulation of fabric was highest when the fabric had no pores and no contact with the human skin, the heat loss from human body (the heat transfer coefficient) was highest when the fabric had pores and the air flow penetrated through the fabric.

Abstract

The limitation of aramid fiber is its surface property, which results in its very poor interfacial adhesion to most of commercial resins. In order to improve the surface property of the aramid fiber, ozone treatment was carried out in this work. The aramid fabrics were evaluated in terms of surface morphology, wicking effect, tensile property, and ball bursting test. The results showed that the surface morphology of aramid fabrics did not undergo an obvious change; the wicking effect increased slightly with an increase in ozone treatment time; the tenacity and elongation of aramid fibers and fabrics did not significant change after ozone treatment, but the tenacity and elongation of aramid yarns showed significant improvement after ozone treatment, and increased with the increase of ozone treatment time; the ball bursting load and penetration displacement had a slight increase as well after ozone treatment. Therefore, ozone treatment could be one method to improve the surface property of the aramid fiber.

Abstract

Thermal performance of aerogel-embedded polyester/polyethylene nonwoven fabrics in cross airflow was experimentally studied by using a laboratory-built dynamic heat transfer measuring device in which the fabric could be applied on a heating rod. Experiments were performed with different airflow velocities and heating conditions. The temperature–time histories of different materials were collected and compared. The temperature difference and convective heat transfer coefficient under continuous heating were analyzed and discussed. Results showed that under preheated conditions, the aerogel-embedded nonwoven fabrics had very small decrease in temperature and good ability to prevent against heat loss in cross flow. As for the continuous heating conditions, the heat transfer rate of each material showed an increasing trend with increase in the Reynolds number. The aerogel-treated nonwoven fabric with the least fabric thickness and aerogel content delivered a significantly increased heat transfer rate at higher Reynolds number. Thicker fabrics with higher aerogel content could provide better insulation ability in cross flow.