Search Results

You are looking at 1 - 2 of 2 items for

  • Author: R. Saravana x
Clear All Modify Search
Open access

K. Vajravelu, S. Sreenadh and R. Saravana

Abstract

In this paper, we investigate the peristaltic transport of a two layered fluid model consisting of a Jeffrey fluid in the core region and a Newtonian fluid in the peripheral region. The channel is bounded by permeable heat conducting walls. The analysis is carried out in the wave reference frame under the assumptions of long wave length and low Reynolds number. The analytical expressions for stream function, temperature field, pressure-rise and the frictional force per wavelength in both the regions are obtained. The effects of the physical parameters associated with the flow and heat transfer are presented graphically and analyzed. It is noticed that the pressure rise decrease with increasing slip parameter β in the pumping region (ΔP > 0). The temperature field decreases with increasing Jeffrey number and the velocity slip parameter; whereas the temperature field increases with increasing thermal slip parameter. Furthermore, the size of the trapped bolus increases with increasing Jeffrey number and decreases with increasing slip parameter. We believe that this model can help in understanding the behavior of two immiscible physiological fluids in living objects.

Open access

K. Kathirvel, R. Rajasekar, T. Shanmuharajan, Samir Kumar Pal, P. Sathish Kumar and J. Saravana Kumar

Abstract

Depletion of fossil fuel based energy sources drive the present scenario towards development of solar based alternative energy. Polycrystalline silicon solar cells are preferred due to low cost and abundant availability. However, the power conversion efficiency of polycrystalline silicon is lesser compared to monocrystalline one. The present study aims at analyzing the effect of calcium titanium oxide (CaTiO3) antireflection (AR) coating on the power conversion of polycrystalline solar cells. CaTiO3 offers unique characteristics, such as non-radioactive and non-magnetic orthorhombic biaxial structure with bulk density of 3.91 g/cm3. CaTiO3 film deposition on the solar cell substrate has been carried out using Radio Frequency (RF) magnetron sputter coating technique under varying time durations (10 min to 45 min). Morphological studies proved the formation of CaTiO3 layer and respective elemental percentages on the coated substrate. Open circuit voltage studies were conducted on bare and coated silicon solar substrates under open and controlled atmospheric conditions. CaTiO3 coated on a solar cell substrate in a deposition time of 30 min showed 8.76 % improvement in the cell voltage compared to the bare solar cell.