Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Priyanka Varshney x
Clear All Modify Search
Open access

Prashant Upadhyaya, Omar Farooq, M.R. Abidi and Priyanka Varshney

Abstract

In building speech recognition based applications, robustness to different noisy background condition is an important challenge. In this paper bimodal approach is proposed to improve the robustness of Hindi speech recognition system. Also an importance of different types of visual features is studied for audio visual automatic speech recognition (AVASR) system under diverse noisy audio conditions. Four sets of visual feature based on Two-Dimensional Discrete Cosine Transform feature (2D-DCT), Principal Component Analysis (PCA), Two-Dimensional Discrete Wavelet Transform followed by DCT (2D-DWT- DCT) and Two-Dimensional Discrete Wavelet Transform followed by PCA (2D-DWT-PCA) are reported. The audio features are extracted using Mel Frequency Cepstral coefficients (MFCC) followed by static and dynamic feature. Overall, 48 features, i.e. 39 audio features and 9 visual features are used for measuring the performance of the AVASR system. Also, the performance of the AVASR using noisy speech signal generated by using NOISEX database is evaluated for different Signal to Noise ratio (SNR: 30 dB to −10 dB) using Aligarh Muslim University Audio Visual (AMUAV) Hindi corpus. AMUAV corpus is Hindi continuous speech high quality audio visual databases of Hindi sentences spoken by different subjects.