Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Prasad Lalta x
Clear All Modify Search
Open access

Prasad Lalta and Khantwal Rahul

Abstract

The present investigation carried out to analyze the breaking load of single lap joint using hybrid joining techniques for alloy steel AISI 4140 and mild steel as base material by experimentally and optimized by Taguchi method and neural network. The six samples of lap joints were prepared namely: bolted joint (BJ); adhesive joint (AJ); welded joint (WJ); bolted-welded joint (BWJ); adhesive-welded joint (AWJ) and adhesivebolted joint (ABJ). The breaking load of the joints in terms of breaking load and elongation were evaluated for each joint. The effect of the adjustment attached to the joint on the breaking load and elongation were evaluated. Taguchi method was applied for given input parameters and L4 design of experiments was used. The breaking load and elongation were taken as output response. The predicted values by Taguchi method were used as target values in neural network fitting curve. Neural network fitting tool was used to check whether the obtained values were near the target value or not. Based on the achieved results, the maximum breaking load and elongation were found for bolted-welded joint.

Open access

Prasad Raturi Himanshu, Prasad Lalta, Pokhriyal Mayank and Tirth Vineet

Abstract

The present study was focused on the fabrication of metal matrix and hybrid metal matrix composites through stir casting process. The Aluminium 6063 was used as base material and SiC/Al2O3 were used as reinforcement with varying weight %. The parametric study on a wire-cut electro discharge machine was carried out by using Taguchi Method. A statistical analysis of variance (ANOVA) was performed to identify the process parameters that were statistically significant. It was observed that the MRR decreases with increase in the percentage weight fraction of SiC and Al2O3 particles in the MMCs and HMMCs. Whereas, the surface roughness parameter increases with increase in the percentage weight fraction of SiC and Al2O3 particles due to the hardness of MMCs and HMMCs composites.