Search Results

1 - 3 of 3 items

  • Author: Piotr Smarzewski x
Clear All Modify Search

Abstract

The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparations based on organosilicon compounds for protection treatment of lightweight aggregates modified with municipal sewage sludge. Issues related to the wettability of the surface layer of hydrophobised lightweight-aggregate concrete supplemented with sewage sludge are discussed in the paper. The experimental part of the study is focused on the physical and mechanical characteristics of lightweight-aggregate concrete and the effect of two hydrophobic preparations on the contact angle of the material. The contact angle for lightweight concrete (θw) was determined as a function of time using one measurement liquid. The hydrophobic coatings in the structure of lightweight concrete modified with sewage sludge were shown using electron microscopy. The investigations demonstrated the effectiveness of hydrophobisation of porous lightweight concretes. On the hydrophobic surfaces, the contact angles decreased with time and depended on the preparations used. The results of the research confirm the possibility to produce lightweight aggregate-concretes modified with sewage sludge with appropriate surface protection against external moisture.

Abstract

The article presents the description of measurement methodology of moisture transport in unsaturated porous materials using Time Domain Reflectometry (TDR) technique on the example of measurement of capillary uptake phenomenon in the sample of autoclaved aerated concrete (AAC). In the paper there are presented basic principles of the TDR method as a technique applied in metrology, its potential for measurement of moisture in porous materials like soils and porous building materials. Second part of the article presents the experiment of capillary rise process in the sample of AAC. Within the experiment moisture content was monitored in the sample exposed on water influence. Monitoring was conducted using TDR FP/mts probes. Preparation of the measuring setup was presented in detail. The TDR readouts post-processing, graphical presentations of the obtained results, short discussion and comparison of TDR readouts to gravimetric measurement were also presented.

Abstract

The article presents information about moisture protection of building materials. The discussed parameters determining the efficiency of the water protection are material porosity, water absorptivity and surface condition of building materials. Moreover the ecological aspect of hydrophobic VOC-free preparations available on the market has been underlined. The first part of the article is a description of moisture problem in the building envelopes and the possibilities of its prevention. The special attention is put on the electric methods of moisture estimation with a special emphasis on the Time Domain Reflectometry (TDR) method. The second part of the article is devoted an experiment of model red-brick walls exhibited on capillary uptake process. For the experiment three model red-brick walls were built and prepared for water uptake process. The experiment was monitored by the capacitive and surface TDR probes thanks to which the necessity of sampling and material destruction could be avoided. Conducted experiments show the progress of water uptake phenomenon in the model walls which differ in type of protection against moisture and prove the potential of the non-invasive measurements using the surface TDR probes. Basic physical parameters of the applied bricks were determined together with the reflectometric measurements. Furthermore, Scanning Electron Microscopy (SEM) was used to analyze the hydrophobic layer continuity.