Search Results

1 - 2 of 2 items

  • Author: Piotr Jaśkowski x
Clear All Modify Search
CFD Analysis of the Fluid Particles Distribution by Means of Aviation Technique


The article describes a computational study, using CFD models, of droplet spray dispersal in the wake of a ‘Turbo Kruk’ airplane up to 500 m downstream. The CFD Reynolds-averaged Navier-Stokes (RANS) models use a Lagrangian (droplet phase) and Eulerian (fluid phase) procedure to predict the droplet trajectories trough the turbulent aircraft wake. The methods described in the work have the potential to improve current models for aerial spraying and will help in the development of new spraying procedures. In this study, the CFD models are used to describe the phenomenon of sprays released from atomizers mounted on the plane. A parametric study of the aircraft model examines the effects of crosswind on the aircraft’s vortex structures and the resulting droplet trajectories. The study shows, that such influence is underestimated in the current models. A comparison of the present results to AGDISP predictions is provided.

Open access
Modelling contractor’s bidding decision


The authors aim to provide a set of tools to facilitate the main stages of the competitive bidding process for construction contractors. These involve 1) deciding whether to bid, 2) calculating the total price, and 3) breaking down the total price into the items of the bill of quantities or the schedule of payments to optimise contractor cash flows. To define factors that affect the decision to bid, the authors rely upon literature on the subject and put forward that multi-criteria methods are applied to calculate a single measure of contract attractiveness (utility value). An attractive contract implies that the contractor is likely to offer a lower price to increase chances of winning the competition. The total bid price is thus to be interpolated between the lowest acceptable and the highest justifiable price based on the contract attractiveness. With the total bid price established, the next step is to split it between the items of the schedule of payments. A linear programming model is proposed for this purpose. The application of the models is illustrated with a numerical example.

The model produces an economically justified bid price together with its breakdown, maintaining the logical proportion between unit prices of particular items of the schedule of payment. Contrary to most methods presented in the literature, the method does not focus on the trade-off between probability of winning and the price but is solely devoted to defining the most reasonable price under project-specific circumstances.

The approach proposed in the paper promotes a systematic approach to real-life bidding problems. It integrates practices observed in operation of construction enterprises and uses directly available input. It may facilitate establishing the contractor’s in-house procedures and managerial decision support systems for the pricing process.

Open access