Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Petra Bubáková x
Clear All Modify Search
Open access

Martin Pivokonsky, Petra Bubakova, Petra Hnatukova and Bohuslav Knesl

A fluidized layer of granular material used for the separation of particulate impurities in drinking water treatment

This paper deals with the application of a fluidized layer of granular material (FLGM) for the direct separation of destabilized impurities during drinking water treatment. Further, it investigates the effect of operation parameters (fluidized layer grain size, technological arrangement, velocity gradient, retention time, dosage of destabilisation reagent and temperature) on the aggregation and separation efficiency of the layer. The tests were carried out in a pilot plant scale. Aluminium sulphate was used as the destabilisation reagent. The highest separation efficiencies were achieved, when the particles entered the fluidized layer immediately after the dosing of the destabilisation reagent, when they had the lowest degree of aggregation. The separation efficiency (φ) also increased with increasing velocity gradient and the maximal value was reached at the velocity gradient of about 250 s-1. The most efficient separation of aluminium was achieved at 5 °C, but the effect of temperature on the efficiency of organic matter separation (φTOC) was not very significant. The maximal efficiency of separation on the layer grains reached the values φAl = 0.81 at the optimal dosage D Al = 1.55 mg L-1 and φTOC = 0.31 at the optimal dosage DA l = 2.36 mg L-1. The indisputable advantage of using FLGM for the separation of impurities is that they are intercepted on the layer grains in a form of solid, water-free shell (or coat) with the density of 2450 kg m-3, and there is no need to deal with the sludge dewatering.

Open access

Martin Pivokonský, Lenka Pivokonská, Jitka Bäumeltová and Petra Bubáková

The Effect of Cellular Organic Matter Produced by Cyanobacteria Microcystis Aeruginosa on Water Purification

The aim of this paper is to investigate the influence of COM (Cellular Organic Matter) produced by Microcystis aeruginosa on the process of water purification by destabilisation and subsequent aggregation of the impurity particles. The research was carried out with a raw water into which COM was added. The removal efficiency of the most significant components of COM, i.e. polysaccharides and proteins, was investigated. It was found that the removal efficiency of polysaccharides and proteins was dependent on the reaction conditions (pH, type of destabilisation reagent and its dosage). The removal efficiency of COM was relatively low. It was about 46% and 41% using ferric sulphate and aluminium sulphate aggregation, respectively. In comparison to the other organic components of COM, mainly polysaccharides, the proteins are removed with a higher efficiency. The GPC analyses of the residual COM showed that the proteins of higher molecular weight were aggregated with a higher efficiency.