Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Pedro Negri x
Clear All Modify Search
Open access

Constanza Brasesco, Liesel Gende, Pedro Negri, Nicolás Szawarski, Azucena Iglesias, Martín Eguaras, Sergio Ruffinengo and Matías Maggi

Abstract

Varroa destructor (Anderson & Trueman, 2000) causes the most important parasitosis of beekeeping in the world. For this reason, prevention is needed to avoid colony death. The most typical treatments involve synthetic acaricides. However, the use of these acaricides results in the emergence of resistant populations of mites to these products and in the appearances of drug residues in products of the hives. Compounds of essential oils have emerged as an alternative to traditional acaricides; however the toxicity produced by these mixtures is currently poorly explored. The aim of this work was to assess, by means of in vitro tests with adult bees, how acaricidal action and toxic interactions in a binary mixture of essential oil compounds (Thymol, Phellandrene, Eucalyptol, Cinnamaldehyde, Myrcene, and Carvacrol) affect V. destructor. Calculations of LC50 ’s of the individual compounds on A. mellifera and V. destructor made clear that the toxic effect of each compound is different for both species. Thymol and Phellandrene turned out to be lethal for mites at lower concentrations than for bees. The binary mixture of these two substances presented a different toxicity than one produced by each pure compound, as it was highly selective for mites in bioassays at 24 hours through complete exposure to both A. mellifera and V. destructor. These results make such formulations optimal substances to be considered as alternative controls for the parasitosis.

Open access

Fiorella G. De Piano, Matias Maggi, María C. Pellegrini, Noelia M. Cugnata, Nicolas Szawarski, Franco Buffa, Pedro Negri, Sandra R. Fuselli, Carina M. Audisio and Sergio R. Ruffinengo

Abstract

The European honey bee (Apis mellifera L.) is known to be affected by such stress factors as pathogen load, poor nutrition and depressed immunity. Nosema ceranae is one of the main parasites that affect colony populations. The relationship between the stress factors and honey bee-bacteria symbiosis appears as an alternative to enhance bee health. The aim of this study was to evaluate the effect of the oral administration of bacterial metabolites produced by Lactobacillus johnsonii AJ5 on nutritional parameters, the N. ceranae development and the performance of A. mellifera colonies. Laboratory assays were performed and demonstrated that the bacterial metabolites did not have a toxic effect on bees. Field trial showed an increase of colonies population over time. Also, a decreasing trend of fat bodies per bee was detected in all colonies but there were no evident changes on abdomen protein content at the end of the assay. Lastly, N. ceranae prevalence showed a tendency to reduce with the organic acids. Future studies should be performed to increase our knowledge of the physiological effects of bacterial metabolites on the health of bee colonies.