Search Results

1 - 2 of 2 items

  • Author: Pedro Bertemes-Filho x
Clear All Modify Search
Extracting parasite effects of electrical bioimpedance measurements

Abstract

The objective of this work is to develop a technique for filtering parasitic effects from the impedance spectra (IS) measured in biological material phantoms. IS data are contaminated with unexpected capacitive and inductive effects from cable, input/output amplifiers capacitances, electrode polarization, temperature and contact pressure when collecting data. It is proposed a model which contains an RLC-network in series with the Cole model (RSC), then called RLC-Cole. It was built four circuits composed by resistors, capacitors and inductors. An impedance analyzer (HF2IS) was used to perform the measurements in the frequency range of 1 to 3000 kHz. Data were fitted into the model and comparisons to the nominal values were made. In order to validate the proposed model, a gelatin phantom and a chicken breast muscle impedance spectra were also collected and analyzed. After filtering, Cole fitting was performed. Results showed a maximum root-mean-square error of 1% for the circuits, 2.63% for the gelatin phantom, whereas 2.01% for the chicken breast. The RLC-Cole model could significantly remove parasitic effects out of a tissue impedance spectrum measured by a 4-point electrode probe. This may be highly important in EIS systems whose objective is to discriminate a normal tissue from a cancerous one.

Open access
Low power current sources for bioimpedance measurements: a comparison between Howland and OTA-based CMOS circuits

Abstract

Multifrequency Electrical Bioimpedance (MEB) has been widely used as a non-invasive technique for characterizing tissues. Most MEB systems use wideband current sources for injecting current and instrumentation amplifiers for measuring the resultant potential difference. To be viable current sources should have intrinsically high output impedance for a very wide frequency range. Most contemporary current sources in MEB systems are based on the Howland circuit. The objective of this work is to compare the Mirrored Modified Howland Current Source (MMHCS) with three Operational Transconductance Amplifier (OTA) based voltage controlled current sources (i.e., class-A, class-AB and current conveyor). The results show that both current conveyor and class-AB OTA-based current sources have a wider output current frequency response and an output impedance of 226% larger than the MMHCS circuit at 1 MHz. The presented class-AB OTA circuit has a power consumption of 4.6 mW whereas current conveyor consumed 1.6 mW. However, the MMHCS circuit had a maximum total harmonic distortion of 0.5% over the input voltage from -0.5 to +0.5 V. The OTA-based current sources are going to be integrated in a semiconductor process. The results might be useful for cell impedance measurements and for very low power bioimpedance applications.

Open access