Search Results

You are looking at 1 - 10 of 11 items for

  • Author: Paulina Pianko-Oprych x
Clear All Modify Search
Open access

Paulina Pianko-Oprych

Modelling of heat transfer in a packed bed column

The CFD modelling of heat transfer in the packed bed column in the laminar and turbulent flow regimes has been presented. Three numerical grids with different densities were generated for the packed bed column. The modelling was performed with the use of the Porous Media Model for treating the flow inside a porous structure. The standard k-ε model along with the logarithmic wall functions for the turbulent flow range was used. The influence of the mesh size on the accuracy of the fluid flow was studied. Both radial and axial direction temperature distributions have been compared with the experimental data1 and the values calculated from a 2DADPF model. A good agreement between the experimental and the predicted values of the pressure drop, temperature distributions and heat transfer coefficient was obtained.

Open access

Paulina Pianko-Oprych and Zdzisław Jaworski

CFD modelling of two-phase liquid-liquid flow in a SMX static mixer

The paper provides an overview of the application of Computational Fluid Dynamics tools for predicting transport processes in two-phase flow in a SMX static mixer. The overview is achieved by taking a brief look at factors: mesh generation, development of sub-models, post-processing including validation and quantitative verification of CFD results with experimental data. Two types of numerical approach were used in the simulations: the Reynolds averaged Navier-Stokes in the steady-state mode with the standard k-??turbulence model and Large Eddy Simulations in the unsteady mode. Both CFD techniques were applied to calculate flow velocities, pressure drop and homogenisation level in a SMX static mixer of the liquid-liquid mixture. The steady state drop size distribution was obtained by implementation procedure containing the population balance equation, where transport equations for the moments of the drop size distribution are solved and the closure problem is overcome by using the Quadrature Method of Moments.

Open access

Paulina Pianko-Oprych and Zdzisław Jaworski

Abstract

The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

Open access

Paulina Pianko-Oprych and Mateusz Palus

Abstract

This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.

Open access

Paulina Pianko-Oprych and Zdzisław Jaworski

Abstract

The paper presents a Computational Fluid Dynamics (CFD) numerical study for a new design of a plate heat exchanger with two different flow patterns. The impact of geometric characteristics of the two studied geometries of exchanger plates on the intensification process of heat transfer was considered. The velocity, temperature and pressure distributions along the heat exchanger were examined. The CFD results were validated against experimental data and a good agreement was achieved. The results revealed that geometrical arrangement of the plates strongly influence the fluid flow. An increase in the Reynolds number led to lowering the friction factor value and increasing the pressure drop. The configuration II of the plate heat exchanger resulted in lower outlet hot fluid temperature in comparison with the configuration I, which means improvement of heat transfer.

Open access

Paulina Pianko-Oprych, Seyed Mehdi Hosseini and Zdzislaw Jaworski

Abstract

The main purpose of this study was to develop a mathematical model, in a steady state and dynamic mode, of a Catalytic Partial Oxidation (CPOx) reformer – Solid Oxide Fuel Cell (SOFC) stack integrated system in order to assess the system performance. Mass balance equations were written for each component in the system together with energy equation and implemented into the MATLAB Simulink simulation tool. Temperature, gas concentrations, pressure and current density were computed in the steady-state mode and validated against experimental data. The calculated I–V curve matched well the experimental one. In the dynamic modelling, several different conditions including step changes in fuel flow rates, stack voltage as well as temperature values were applied to estimate the system response against the load variations. Results provide valuable insight into the operating conditions that have to be achieved to ensure efficient CPOx performance for fuel processing for the SOFC stack applications.

Open access

Paulina Pianko-Oprych, Ekaterina Kasilova, and Zdzisław Jaworski

Abstract

The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC) stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.

Open access

Paulina Pianko-Oprych, Tomasz Zinko and Zdzisław Jaworski

Abstract

The aim of the work was to develop a mathematical model for computing the steady-state voltage – current characteristics of a planar Solid Oxide Fuel Cell and to determine the performance of a new SOFC design. The design involves cross-flow bipolar plates. Each of the bipolar plates has an air channel system on one side and a fuel channel system on the other side. The proposed model was developed using the ANSYS-Fluent commercial Computational Fluid Dynamics (CFD) software supported by additional Fuel Cell module. The results confirm that the model can well simulate the diagonal current path. The effects of temperature and gas flow through the channels and a Membrane Electrode Assembly (MEA) structure were taken into account. It was shown that a significant increase of the MEA temperature at high current density can lead to hot spots formation and hence electrode damage.

Open access

Paulina Pianko-Oprych, Ekaterina Kasilova and Zdzisław Jaworski

Abstract

The CFD modelling of heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC) stack has been presented. Stack performance predictions were based on a 16 anode-supported microtubular SOFCs sub-stack, which is a component of the overall stack containing 64 fuel cells. Both radiative and convective heat transfer were taken into account in the modelling. The heat flux value corresponded to the cell voltage of 0.7 [V]. Two different cases of the inlet air velocity of 2.0 and 8.5 [ms–1] were considered. It was found that radiation accounted for about 20–30 [%] of the total heat flux from the active tube surface, which means that the convective heat transfer predominated over the radiative one.

Open access

Paulina Pianko-Oprych, Tomasz Zinko and Zdzisław Jaworski

Abstract

The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC) design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD) tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.