Search Results

1 - 2 of 2 items

  • Author: Paulina Krakowska x
Clear All Modify Search

Abstract

The article presents the concept of a computer system for interpreting unconventional oil and gas deposits with the use of X-ray computed tomography results. The functional principles of the solution proposed are presented in the article. The main goal is to design a product which is a complex and useful tool in a form of a specialist computer software for qualitative and quantitative interpretation of images obtained from X-ray computed tomography. It is devoted to the issues of prospecting and identification of unconventional hydrocarbon deposits. The article focuses on the idea of X-ray computed tomography use as a basis for the analysis of tight rocks, considering especially functional principles of the system, which will be developed by the authors. The functional principles include the issues of graphical visualization of rock structure, qualitative and quantitative interpretation of model for visualizing rock samples, interpretation and a description of the parameters within realizing the module of quantitative interpretation.

Abstract

The article describes three interlaboratory experiments concerning 222Rn determination in water samples. The first two experiments were carried out with the use of artificial radon waters prepared by the Laboratory of Radiometric Expertise (LER), Institute of Nuclear Physics, Polish Academy of Sciences in Kraków in 2014 and 2018. The third experiment was performed using natural environment waters collected in the vicinity of the former uranium mine in Kowary in 2016. Most of the institutions performing radon in water measurements in Poland were gathered in the Polish Radon Centre Network, and they participated in the experiments. The goal of these exercises was to evaluate different measurement techniques used routinely in Polish laboratories and the laboratories’ proficiency of radon in water measurements. In the experiment performed in 2018, the reference values of 222Rn concentration in water were calculated based on the method developed at LER. The participants’ results appeared to be worse for low radon concentration than for high radon concentrations. The conclusions drawn on that base indicated the weaknesses of the used methods and probably the sampling. The interlaboratory experiments, in term, can help to improve the participants’ skills and reliability of their results.