Search Results

You are looking at 1 - 5 of 5 items for

  • Author: P. Machovčák x
Clear All Modify Search
Open access

K. Michałek, M. Tkadleckova, K. Gryc and P. Machovcak

Abstract

The paper presents new results obtained from the evaluation of the chemical composition, microcleanliness and structure of the 90-ton heavy ingot cast in two successive heats, in which the content of Cu and Ni was intentionally modified in order to assess the degree of mutual mixing of the two heats in the ingot volume during the steel casting and solidification. For determination of chemical composition, spectral analysis and LECO were used. Microcleanliness evaluation was carried out on a Hitachi microanalytical complex equipped with the energy-dispersive spectrometer Vantage. To assess the composition of oxide non-metallic inclusions ternary diagrams were used. Structure of the basic steel matrix was induced by etching. The evaluation showed that in the casting of two successive heats, a certain degree of inhomogeneity of chemical composition, especially in the lower part of the ingot can be assumed in case of different composition. A greater segregation of sulphur in the central top part of the ingot was also detected. However, microcleanliness of the entire ingot is in general very good with low proportions of non-metallic inclusions.

Open access

L. Socha, K. Michalek, J. Bažan, K. Gryc, P. Machovčák, A. Opler and P. Styrnal

Abstract

This paper presents the industrial results of evaluation of efficiency of synthetic slags during the treatment of steel at the equipment of the secondary metallurgy under conditions of the steel plant VÍTKOVICE HEAVY MACHINERY a.s. The aim of the heats was to assess the influence of the briquetted and sintered synthetic slags based on Al2O3 aiming the course of the steel desulphurization and slag regime during the production and treatment of steel grade 42CrMo4 with the technology EAF→LF→ VD. Within the plant experiments, basic parameters influencing the steel desulphurization and slag regime were monitored: desulphurization degree, basicity, content of easily reducible oxides, proportion of CaO/Al2O3 and Mannesmann’s index. Obtained results allowed to compare the steel desulphurization and to evaluate the slag regime. It was proved that the synthetic slag presenting the briquetted mixture of secondary corundum raw materials can adequately replace the synthetic slag created from the sintered mixture of natural raw materials.

Open access

M. Tkadlečková, P. Machovčák, K. Gryc, K. Michalek, L. Socha and P. Klus

The paper presents new knowledge and experience from numerical modelling of macrosegregation in heavy steel ingot using ProCAST software. The main aim of numerical modelling realized under the conditions of the Department of Metallurgy and Foundry and Regional Materials Science and Technology Centre at VSB-TU Ostrava is the optimization of the production of heavy steel ingots produced in V´ITKOVICE HEAVY MACHINERY a.s. Input parameters of computation were determined by the real conditions of parallel experimental casting of a 90-ton steel ingot. The input data were also verified by thermal analysis and thermography measurement. The numerical results of macrosegregation were compared with the chemical analysis evaluated in a real ingot section. According to the comparison, attention will be focused next on determination of the effect of boundary conditions of filling and solidification of the ingot on the size of macrosegregation.

Open access

J. Vlček, D. Jančar, J. Burda, M. Klárová, M. Velička and P. Machovčák

Based on the operational measurement, of which content was to determine ladle thermal profile, there were analysed causes of possible damage of lining in steel ladles by steel breakout through the ladle shell. There exists connection between thermal state of ladle lining during the operation and its lifetime. There were reached to the conclusion that the cause of failure in the lining of ladle is except for high temperature of bath, also wide interval of temperature change during the tap operation, in consequence with possible insufficient pre-heating of ladle, discontinuous operation of aggregate and damage of insulating lining layer, respectively deformation of ladles shell.

Open access

M. Tkadlečková, K. Michalek, P. Machovčák, M. Kováč and L. Socha

The main problem in the production of forgings from tool steels, especially thick plates, blocks, pulleys and rods which are used for special machine components for demanding applications, it is the inhomogeneous structure with segregations, cracks in segregations or complex type of non-metallic inclusions MnS and TiCN. These forgings are actually produced from conventional forging ingots. Due to the size of forgings, it would be interesting the production of these forgings from slab ingots. It is possible that the production of forgings from slab ingots (which are distinguished by a characteristic aspect ratio A/B), it would reduce the occurrence of segregations. The paper presents the verification of the production process of slab steel ingots in particular by means of numerical modelling using finite element method. The paper describes the pre-processing, processing and post-processing phases of numerical modelling. The attention was focused on the prediction of behavior of hot metal during the mold filling, on the verification of the final porosity, of the final segregation and on the prediction of risk of cracks depending on the actual geometry of the mold.