Search Results

You are looking at 1 - 7 of 7 items for

  • Author: P. Golewski x
Clear All Modify Search
Open access

T. Sadowski and P. Golewski

Prestressed joints are widely used in construction using connectors in the form of screws, whose task is to strong clamping of joined parts, thereby the internal forces in joint are transferred by surface friction contact of the elements. In the automotive and aerospace industries hybrid joints are more widely applied. Mechanical connectors are added to the adhesive joint in form of rivets, screws or clinch increasing its strength properties.

The aim of this study was to determine how the prestressed connectors influence the mechanical response of hybrid, single and double lap joints. The influence of different distribution of the connectors was also investigated. Numerical study was conducted in ABAQUS program. Mechanical connectors were modeled by using fasteners, that allowed for a considerable simplification of the numerical model. In their application, there is no need for an additional submodels for connectors in the form of the rivet or the bolt. Prestressing is activated by direct application of the force to the connector.

In the numerical examples the authors assumed that the diameter of the mechanical connectors was equal to 6mm and shear strength was equal 1kN. Adhesive layers were modeled by using cohesive elements for which maximum shear stresses and fracture energy were specified. The layer thickness was assumed to be equal 0.1mm and it was initially removed from the areas where mechanical connectors were placed.

Two types of joints were analysed in the study: the single lap joint with lap dimensions 40x40mm as well as the double lap joint with lap dimensions 40x20mm, from which it results that theoretical strength of both connections should be the same.

The prestressing of connectors was introduced by the force 1.5kN. For all pure - mechanical joints and for single lap joints positive effects were obtained. For double lap joints additional prestressing did not significantly affect for their strength.

The influence of distribution of mechanical connectors was additionally analyzed by consideration of three configurations, where the rows of rivets were located at distances of 5, 10 and 15mm from the lap edge. The maximum increase of the load capacity by 24% was achieved for single lap joint as well as 35.7% for double lap joint.

The obtained numerical results indicate the positive effects of additional pressure and allows for practical suggestions how to correct and optimize spacing distance of mechanical connectors in hybrid joints to get better mechanical response.

Open access

P. Golewski and T. Sadowski

Abstract

The composites made of continuous fibers in the form of unidirectional and fabric prepregs are widely used in many fields of engineering for the production of lightweight and durable parts or whole structures. To achieve this, we not only need to possess knowledge of the composite mechanics, but also have to master the technology. In most cases, particularly for parts with advanced geometric shapes, autoclaving technique is used. The success of the carried out process occurs when the prepreg reaches the proper temperature throughout its volume in the specified time, where there are no overheated or unheated zones as well as when the prepreg is correctly pressed against the mold. In order to ensure adequate stiffness, the mold has much greater thickness than formed composite and the stiffening ribs. The result is that the time required for prepreg heating is greatly extended. To prevent this, the appropriate electric heaters embedded in the silicone grips are used.

The paper presents problems related to the mold structures and application of numerical methods aiming at early verification of the temperature and stress distribution. The coupled analysis of CFD (computational fluid dynamic) and heat transfer structural simulations were performed in Abaqus program. The studies were carried out for the airfoil fragment. A total of 12 simulations were conducted, 6 cases in which heat was supplied only from air flowing through the autoclave and 6 cases which included heaters inside the silicone grips. In the result the inhomogeneity of prepreg heating for each of the mold geometry was compared, and the average temperature was obtained after 60 seconds from the process initiation. Both the pressure inside the silicone grips (before inserting the mold into the autoclave) and the non-uniform temperature distribution result in the formation of stresses whose values were analyzed for molds made of aluminum. For this purpose the temperature dependent elastic – plastic material model was used for aluminum molds.

Open access

T. Sadowski, T. Balawender, R. Sliwa, P. Golewski and M. Knec

The aim of the paper is to review different types of modern hybrid joints applied in aerospace. We focused on three particular cases: 1) spot welding - adhesive, 2) rivet-bonded and 3) clinch-bonded joints. The numerical models presented in the paper for these joints describe their complex behaviour under mechanical loading. The numerical calculations performed using ABAQUS code were compared to experimental results obtained by application of the Digital Image Correlation system (DIC) ARAMIS.

The results investigated within the paper lead to the following major conclusions:

- the strengthening of joints by application of adhesive significantly improve static strength,

- the final failure of the joined structural system significantly depends on the surface adhesive area,

- the stiffening effects of the hybrid joint lead to higher reliability and durability of the structural joints.

Open access

T. Sadowski and P. Golewski

A section of fuselage skin with dimension 30 x 200 mm was subjected to numerical study and loaded by skew bending (Fig. 3). The thickness of the skin was 0,6 mm, the length of a leg of an angle “L” profile stringer was 12 mm with 1mm thickness. The angle of inclination α of the load plane to the skin plane varies in the range from 10° to 90° with 10° increment. The elastic - plastic material model of D16T aluminum alloy was used in simulations of the fuselage skin as well as for “L” and “C” profile stringers. In the material model description damage of aluminum alloy was taken into account. An adhesive layer with thickness of 0,1mm was modeled using cohesive elements with the failure mode depending on the shear strength and the tensile strength.

The paper presents a comparative analysis of the considered structural elements with application of the unsymmetrical “L” profile or the symmetrical “C” profile with the same cross section area.

All numerical studies were performed in Abaqus program. Finally, one can conclude that the stiffness of the structural element with application of the symmetrical “C” profile stringer is stronger, whereas the mechanical response of both versions of the hybrid joint significantly depends on the angle of load inclination α.

Open access

T. Sadowski and P. Golewski

The paper presents an analysis of the influence of a number of technological aspects of both the socket and the pin on the value of the force required for joint disconnection. A number of numerical simulations were made in Abaqus program to examine effects of such parameters as: presence of an interference fit, use of spherical latches, application of different rigidity of the pin by making cuts with variable width and length, use of different angles of inclination of the working part of the connection. Models of different simple joints presented in this work, can also operate in large structures forming panels of aircraft structures. For this purpose one of the analyzed geometry of the connection was applied to create a 3-D panel model of the structural element in CAD - SolidWorks program. All analysed models with different geometries were subjected to simulation of opening process. The corresponding critical forces were estimated for the beginning of the failure process. The detailed discussion of all model parameters was included to specify their influence on the whole disconnection of joints. It should be noted that aerospace structures work under complex loading states and further numerical studies are required to extend the presented results.

Open access

P. Golewski, J. Gajewski and T. Sadowski

Abstract

Artificial neural networks [ANNs] are an effective method for predicting and classifying variables. This article presents the application of an integrated system based on artificial neural networks and calculations by the finite element method [FEM] for the optimization of geometry of a thin-walled element of an air structure. To ensure optimal structure, the structure’s geometry was modified by creating side holes and ribs, also with holes. The main criterion of optimization was to reduce the structure’s weight at the lowest possible deformation of the tested object. The numerical tests concerned a fragment of an elevator used in the “Bryza” aircraft. The tests were conducted for networks with radial basis functions [RBF] and multilayer perceptrons [MLP]. The calculations described in the paper are an attempt at testing the FEM - ANN system with respect to design optimization.

Open access

T. Sadowski and P. Golewski

Abstract

The contemporary demands in different branches of engineering require application of new multi-component materials and structural systems. Appropriately chosen joining technology can offer significant enhancement of structural system performance in terms of effectiveness, reliability, safety and other design criteria. The modern applications of complex joints are of great technological interest as they permit to combine and to enhance the individual effects of each kind of joint. This is of great importance for modern applications in different branches of engineering: aerospace, mechanical and civil. Therefore in this paper we will focus on the analysis of mechanical response of adhesive joint of aluminium strips reinforced by rivets. The aim of the paper is to investigate experimentally the mechanical behaviour of adhesive joint of aluminium strips reinforced by rivets for industrial applications in aerospace. The considered joint was subjected to uniaxial loading. The tests in this paper were performed for: • classical adhesive joint in order to investigate material parameters for numerical modelling of the hybrid joint • hybrid joining of the structural elements in order to investigate the reinforcement effect. The experiments with application of digital image ARAMIS system allowed for on-line monitoring of the deformation process of the considered joining elements. The particular distributions of displacement fields at the joint surface were estimated for any stage of loading process. Numerical modelling was performed for experimentally investigated specimens. The materials parameters, necessary for calculation, were estimated from experiments. FEA modelling was done with the help of ABAQUS code.