Search Results

1 - 2 of 2 items

  • Author: Péter Ficzere x
Clear All Modify Search

Abstract

The recent years, 3D printing has become a hot topic, however, it’s hard to design parts without a deep understanding of the material properties. The aim of this study is to estimate the modal parameters and the damping properties via experimental dynamic analysis of a part made from PLA. We will study the effects of the different directions of printing. With the results we can provide data for FEM software input.

Abstract

In the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadi-ene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.