Search Results

1 - 3 of 3 items

  • Author: Otakar Bokůvka x
Clear All Modify Search
Fatigue lifetime of 20MnV6 steel with holes manufactured by various methods

Abstract

In this paper, the authors publish their own experimental results of the examination of the different holes (milled, drilled and drilled + shot peened) on the fatigue lifetime of 20MnV6 steel. The experiments were carried out at low-frequency loading (f = 10 Hz, pulsating tension loading) in the region from N = 2×105 up to N = 2×106 cycles. The best fatigue properties were obtained in the parts with drilled + shot peened holes.

Open access
Safe choice of structural steels in a region of ultra-high number of load cycles

Abstract

In this paper the authors introduce their own selected experimental results in the field of the investigation of fatigue resistance of structural steels. The experiments were carried out on the nine structural steels including high strength steels, DOMEX 700MC, HARDOX 400, HARDOX 450, 100Cr6 (UTS from 446 MPa to 2462 MPa) at high-frequency cyclic loading (f = 20 kHz, T = 20 ± 5 °C, R = -1) in the region of number cycles ranged from N ≈ 2×106 to N ≈ 2×109 cycles of loading. The continuous decrease of fatigue strength in dependence on the number of loading cycles was observed with the average value of ratio σa2×109/σa2×106 = 0.69.

Open access
Obtaining of biomorphic composites based on carbon materials

Abstract

Aim of this paper is to present the properties of carbon preforms for the production of biomorphic composites. Carbon samples were obtained through pyrolysis of paulownia wood, replicating the microstructure of the cellulosic precursor. Many characterization methods such as Raman Spectroscopy, light microscopy, hardness tests and pore size analyzer detection were used to investigate the microstructure of the product as well as the pore size of carbon samples. Obtained results showed that the parts of early or late wood template play an important role in the pore size, specific surface area and pore volume of the product. This review aims to be a comprehensive description of the development of carbon chars: from wood templates and their microstructure to potential applications of biomorphic materials.

Open access