Search Results

1 - 4 of 4 items

  • Author: Orazio Muscato x
Clear All Modify Search
A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation

Abstract

The Wigner equation represents a promising model for the simulation of electronic nanodevices, which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. During these years, a Monte Carlo technique for the solution of this kinetic equation has been developed, based on the generation and annihilation of signed particles. This technique can be deeply understood in terms of the theory of pure jump processes with a general state space, producing a class of stochastic algorithms. One of these algorithms has been validated successfully by numerical experiments on a benchmark test case.

Open access
Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier

Abstract

The Wigner transport equation can be solved stochastically by Monte Carlo techniques based on the theory of piecewise deterministic Markov processes. A new stochastic algorithm, without time discretization error, has been implemented and studied in the case of the quantum transport through a rectangular potential barrier.

Open access
A hierarchy of hydrodynamic models for silicon carbide semiconductors

Abstract

The electro-thermal transport in silicon carbide semiconductors can be described by an extended hydrodynamic model, obtained by taking moments from kinetic equations, and using the Maximum Entropy Principle. By performing appropriate scaling, one can obtain reduced transport models such as the Energy transport and the drift-diffusion ones, where the transport coefficients are explicitly determined.

Open access
Electron transport in silicon nanowires having different cross-sections

Abstract

Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

Open access