Search Results

1 - 3 of 3 items

  • Author: Olusola N. Majolagbe x
Clear All Modify Search
Metalotolerance Capacity of Autochthonous Bacteria Isolated From Industrial Waste Effluent

Abstract

Microbes play significant roles in remediation of heavy metal polluted industrial effluent using the mechanisms of biosorption and bioaccumulation. In the present study, six heavy metal resistant autochthonous bacteria species namely Bacillus cereus, B. megaterium, B. subtilis, Flavobacterium aquatile, Pseudomonas flourescens and Pseudomonas putida were isolated from effluent samples collected from Paper-mill industry (PMI), Paints and Chemicals Industry (PCI), and Steel-rolling Industry (SRI). The isolates were studied for their heavy metal tolerant capacities at different aqueous salt concentrations. Elemental analysis of the industrial effluent samples collected indicated the presence of heavy metals such as Copper (Cu2+), Manganese (Mn2+), Iron (Fe2+) and Lead (Pb2+) at varying concentrations in μg/ml. Generally, there were variations in the minimum inhibitory concentrations (MIC) of the heavy metal salt to each of the bacteria understudy. The MIC value of each of the bacterial isolates to aqueous solution of Cu2SO4 showed that B. megaterium, B. subtilis, Pseudomonas flourescens and Pseudomonas putida had the same MIC value of 20 ± 1.5 μg/mL while Bacillus cereus and Flavobacterium aquatile had MIC values of 13 ± 1.3 μg/mL and 25 ± 2.1 μg/mL respectively. This variation was also noticeable in aqueous salts of Mn2SO4, Fe2SO4 and Pb2SO4. The bacteria isolates showed sensitivity to heavy metals with increasing zone of inhibition as concentration increased with each isolate showing varying degree of metalotolerance. The effectiveness of the autochthonous bacteria as a means to bio-augment the remediation of heavy metal polluted industrial effluent was further proven and recommended.

Open access
Metalotolerance Capacity of Autochthonous Bacteria Isolated From Industrial Waste Effluent

Abstract

Microbes play significant roles in remediation of heavy metal polluted industrial effluent using the mechanisms of biosorption and bioaccumulation. In the present study, six heavy metal resistant autochthonous bacteria species namely Bacillus cereus, B. megaterium, B. subtilis, Flavobacterium aquatile, Pseudomonas flourescens and Pseudomonas putida were isolated from effluent samples collected from Paper-mill industry (PMI), Paints and Chemicals Industry (PCI), and Steel-rolling Industry (SRI). The isolates were studied for their heavy metal tolerant capacities at different aqueous salt concentrations. Elemental analysis of the industrial effluent samples collected indicated the presence of heavy metals such as Copper (Cu2+), Manganese (Mn2+), Iron (Fe2+) and Lead (Pb2+) at varying concentrations in μg/ml. Generally, there were variations in the minimum inhibitory concentrations (MIC) of the heavy metal salt to each of the bacteria understudy. The MIC value of each of the bacterial isolates to aqueous solution of Cu2SO4 showed that B. megaterium, B. subtilis, Pseudomonas flourescens and Pseudomonas putida had the same MIC value of 20 ± 1.5 μg/mL while Bacillus cereus and Flavobacterium aquatile had MIC values of 13 ± 1.3 μg/mL and 25 ± 2.1 μg/mL respectively. This variation was also noticeable in aqueous salts of Mn2SO4, Fe2SO4 and Pb2SO4.The bacteria isolates showed sensitivity to heavy metals with increasing zone of inhibition as concentration increased with each isolate showing varying degree of metalotolerance. The effectiveness of the autochthonous bacteria as a means to bio-augment the remediation of heavy metal polluted industrial effluent was further proven and recommended.

Open access
Genetic Diversity Among Strains of Pleurotus species (oyster mushroom) Using Morphometric Traits Under Varied Temperature and pH

Abstract

Genetic diversity in nineteen strains of Pleurotus was studied using morphometric traits and growth factors. Ability of the isolates of these strains to tolerate different ranges of temperature and pH were evaluated. Highest mycelial growth rates were obtained at 25 °C (mutants and hybrids) and 30 °C (wild type), while LAU 90 (mutant) performed satisfactorily at all evaluated temperature ranges (15-35 °C). Highest mycelial yields (dry weight) were produced by LAU 90 at different pH regimes (4.0 - 9.0), while hybrids LN 97 and LN 98 maximally produced mycelial yield at pH 5.0 and 7.0, respectively. Analysis od Principal component (PC) revealed that components of these strains accounted for 86.1% of total variations among the strains with first PC recording 44.6%. The dendrogram discriminated nineteen Pleurotus genotypes into two major genetic groups with mutants and hybrid strains in Cluster A, separated distinctly from wild parents in Cluster B, indicating genetic diversity. The expression of heterosis can be maximized by information obtained among the hybrid strains and mutant (LAU90) strain. The hybrid (LN98) strain with superior performance may be selected for adoption in commercial mushroom production.

Open access