Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Nicolae Angelescu x
Clear All Modify Search
Open access

Nicolae Angelescu, Cristina Stancu, Sofiane Amziane, Vasile Bratu and Elena Valentina Stoian

Abstract

Refractory concretes based on aluminous cements are used with great success in areas where high temperatures are required. The mineralogical composition of the high alumina cement is the main factor which gives the physical and mechanical properties at high temperatures of refractory monolithic materials.

It is therefore desirable to use high alumina cements based on mineralogical compounds with high refractoriness, because in the end those beneficial properties can be found in the final product - refractory concrete.

The aim of this paper is to design, realize and characterize different compositions of high alumina cements based on mineralogical compounds with the highest refractory from the CaO-Al2O3 binary system (i.e. CA, CA2, and CA6), and to find ways of hydraulic activation of calcium hexa aluminate, also.

Open access

Nicolae Angelescu, Darius Stanciu, José Barroso de Aguiar, Hakim S. Abdelgader and Vasile Bratu

Abstract

The article presents a comparative analysis on the hydration of cement paste without superplasticizer and water/cement ratio of 0.35 and a cement paste with the same water/cement ratio but has in its composition 2% superplasticizer additive Glenium Sky 526. For characterizing the hydration process of cement paste, both mixtures were subjected to X-ray diffraction and thermogravimetry analysis, at 3, 7, and 28 days passed since the initiation of hydration process.

Open access

Nicolae Angelescu, Ioana Ion, Darius Stanciu, José Barroso Aguiar, Elena Valentina Stoian and Vasile Bratu

Abstract

The development of polymeric materials offers new perspectives of science and technology due to their outstanding properties. These properties are obtained either due to the effect of dispersion polymers and their polymerization either due to their intervention in structure formation. They were prepared epoxy resin polymer concrete, Portland cement, coarse and fine aggregate and to evaluate the influence of resin dosage on microstructures and density of such structures reinforced concrete mixtures. The paper detailing the raw materials used in experimental works and structural properties of concrete studied.

Open access

Dan Nicolae Ungureanu, Daniela Avram, Nicolae Angelescu, Adrian Catangiu, Florina Violeta Anghelina and Veronica Despa

Abstract

In this paper is presented a comparative study regarding the synthesis of hydroxyapatite powders. The chosen method of synthesis of this biomaterial was chemical co-precipitation. The structure, size and morphology of the obtained powders were analyzed by X-ray diffraction, infrared spectroscopy - FTIR, dynamic light diffusion DLS tehnique and scanning electron microscopy-SEM. The results obtained were compared with those obtained on a commercial hydroxyapatite powder. Investigation methods have confirmed the synthesis of a high purity hydroxyapatite with a optimal degree of crystallization and crystallinity for the reconstruction and regeneration of hard tissue.

Open access

Nicolae Angelescu, Vasile Bratu, Elena Valentina Stoian, Dan Nicolae Ungureanu and Ana-Maria Gurban

Abstract

Calcium-phosphate cements is one of the most popular types of biomaterials, both due to their specific properties of self - setting and of their superior biocompatibility.

Although in general the phosphocalcic cements, which are the subject of the present paper, have somewhat lower mechanical properties than other biomaterials based on calcium and phosphorus, or even other dental cements of the same nature. The ceramic compositions presented in the present paper constitute a special category of biomaterials due to other notable advantages that characterize them. Thus, this category of materials is defined by a near-perfect adaptation to the surface of the biological tissue, as well as by a convenient resorption rate, processes followed by the generation of optimal bone formation. In this paper are presented principles of realization of the calcium-phosphate cements (raw materials and conditions of production), as well as the properties of these biomaterials, insisting, in particular, on the chemistry of the setting reactions. At the same time, informations regarding the possibilities of clinical use, such as implants are presented.

Open access

Daniela Avram, Dan Ungureanu, Nicolae Angelescu and José Barroso de Aguiar

Abstract

Phosphocalcic glasses, based on ternary system SiO2 - CaO- P2O5 and those doped with copper (SiO2 – CaO - P2O5 - Cu2O) can be obtained by the traditional method of sub-cooling melts or modern methods such as process that uses mechanical energy, neutrons action, deposition in thin layers or by sol-gel technique. This paper shows the experimental results of three compositional phosphocalcic glasses: 50% SiO2 - 43% CaO - 7% P2O5, 50% SiO2 - 38% CaO - 7% P2O5 - 5% Cu2O obtained through sol-gel method and 45% SiO2 - 22.5% CaO - 22.5 Na2O - 5% P2O5 - 5% Cu2O obtained by melting. In order to study their bioactivity, the three compositions were structural analyzed by X-ray diffraction method. In this case the apatite formation was highlighted after soaked in simulated body fluid, but also other compounds (CaCO3 and CuO) resulting from the same process were observed. In case of the melting glass apatite formation has not been highlighted. The functional groups present in the structure of glasses before and after soaking (PO4 3−, CO3 2− and HO) were highlighted by the Fourier Transform Infrared Spectroscopy (FTIR). The elemental chemical composition was confirmed by elemental analysis WD-XRF. The morphology of sol-gel glass powders was revealed by SEM analysis. All glass compositions were tested in terms of antibacterial activity in vitro.