Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Monika Tabak x
Clear All Modify Search
Open access

Monika Tabak and Barbara Filipek-Mazur

Abstract

Efficient increase in the content of available forms of elements in soil depends not only on their total content introduced to soil material, but also on the technology of its application. Technology consists of techniques and date of application as well as agronomic practices aimed at maintaining proper conditions for element transformations. The method of application of waste elemental sulfur and ground phosphate rock was assessed. Doses of 20 and 40 mg S as well as 40 and 80 mg P·kg−1d.m. were added to medium soil; 30 and 60 mg S as well as 60 and 120 mg P·kg−1d.m. were added to heavy soil. The soil samples were collected on the day of application of materials and after 15, 30, 60 and 90 days. The soil pH value decreased during the incubation. An increase in available sulfur content was observed in both soils after elemental sulfur application; the sulfur content in the medium soil depended on the dose of waste. The soils with the addition of a double dose of ground phosphate rock had the highest content of available phosphorus.

Open access

Antoni Rogóż and Monika Tabak

Abstract

The aim of the research was to determine the concentration of selected macroelements in soil and in root crops (potatoes and fodder beets) at a variable soil reaction. The changes in pH values in the studied soils influenced the content of these elements in soluble forms determined in 0.1 mol HCl·dm-3. A statistical analysis showed a positive relationship between the soil pH value and the calcium and magnesium contents in a form close to the total form, as well as the content of soluble forms of phosphorus, calcium, and magnesium. The content of the studied macroelements, i.e. phosphorus, calcium, magnesium in the cultivated fodder beets and potatoes depended on abundance and form in which the studied elements occurred in soil, and also on specie and analyzed part of the plant. Along with the increase in pH values of the an increase in the phosphorus content and reduction of the magnesium content in the roots and above-ground parts of the beets were found. The calcium content in the roots increased along with an increase in pH of the soils, whereas direction of changes in the content of this element in the petioles and laminae of the beets was not unambiguous. A slight decrease in the content of the studied elements in the potato tubers (along with the increase in pH of the soils) was found.