Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mohsen Alipour x
Clear All Modify Search
Open access

Mohsen Alipour and Dumitru Baleanu

Abstract

In this work, we focus on the fractional versions of the well-known Kolmogorov forward equations. We consider the problem in two cases. In case 1, we apply the left Caputo fractional derivatives for α ∈ (0, 1] and in case 2, we use the right Riemann-Liouville fractional derivatives on R+, for α ∈ (1, +∞). The exact solutions are obtained for the both cases by Laplace transforms and stable subordinators.

Open access

Shokoufeh Taherkhani, Fatemeh Moradi, Masoumeh Hosseini, Mohsen Alipour and Hadi Feizi

Abstract

Objective. Ghrelin, a 28 amino acid peptide, has diverse physiological roles. Phosphatidylino-sitol-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are involved in some of the recognized actions of ghrelin. It has been shown that ghrelin upregulates HOXB4 gene expression but the real mechanism of this effect is not clear.

Methods. Rat bone marrow stromal cells (BMSCs) were cultured in DMEM. BMSCs were treated with ghrelin (100 μM) for 48 h. Real-time PCR for HOXB4 was performed from Control (untreated BMSCs), BG (BMSCs treated with 100 µM ghrelin), PD (BMSCs treated with 10 µM PD98059, a potent inhibitor of mitogen-activated protein kinase, and 100 µM ghrelin), LY (BM-SCs treated with 10 µM LY294002, a strong inhibitor of phosphoinositide 3-kinase, and 100 µM ghrelin) and SY (BMSCs treated with 10 µM LY294002 plus 10 µM PD98059, and 100 µM ghrelin) groups. Relative gene expression changes were determined using Relative expression software tool 9 (REST 9).

Results. HOXB4 gene has been overexpressed in ghrelin-treated BMSCs (p<0.05). PI3K inhi-bition by LY294002 significantly downregulated the ghrelin-induced overexpression of HOXB4 (p<0.05).

Conclusion. We can conclude that ghrelin, through PI3K/Akt pathway, may improve BMSC transplantation potency by reducing its apoptosis. Moreover, upregulating HOXB4 in BMSC and its possible differentiation to HSCs might in the future open the doors to new treatment for hematologic disorders. Therefore, activating the PI3K/Akt pathway, instead of using a non-specific inducer, could be the principal point to increase the efficiency of BMSC-based cell therapies in the future.