Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mohd. Shahid Khan x
Clear All Modify Search
Open access

Ziaul Raza Khan, Munirah, Anver Aziz and Mohd. Shahid Khan

Abstract

High-quality CdS nanocrystalline thin films were grown by sol-gel spin coating method at different solution temperatures on glass substrates. As-deposited films exhibited nanocrystalline phase with hexagonal wurtzite structure and showed good adhesion and smooth surface morphology. It was clearly observed that the crystallinity of the thin films improved with the increase in solution temperature. Crystallites sizes of the films also increased and were found to be in the range of 10 mm to 17 nm. The influence of the growth mechanism on the band and sub-band gap absorption of the films was investigated using UV-Vis and photothermal deflection spectroscopy (PDS). The band gap values were calculated in the range of 2.52 eV to 2.75 eV. The band gap decreased up to 9 % with the increase in solution temperature from 45 °C to 75 °C. Absorption coefficients estimated by PDS signal showed the significant absorption in low photon energy region of 1.5 eV to 2.0 eV. The dark and illuminated I-V characteristics revealed that the films were highly photosensitive. The results demonstrated the potential applications of sol-gel grown CdS nanocrystalline thin films as photoconductors and optical switches.

Open access

Munirah, Ziaul Raza Khan, Anver Aziz, Mohd. Shahid Khan and M.U. Khandaker

Abstract

ZnO thin films were fabricated on quartz substrates at different zinc acetate molar concentrations using sol-gel spin coating method. The samples were characterized using X-ray diffraction, field emission scanning electron microscope, UV-Vis spectroscopy, FT-IR spectroscopy and photoluminescence spectroscopy. Sub-band gap absorption of ZnO thin films in the forbidden energy region was carried out using highly sensitive photothermal deflection spectroscopy (PDS). The absorption coefficients of ZnO thin films increased in the range of 1.5 eV to 3.0 eV, upon increasing zinc concentration. The optical band gaps were evaluated using Tauc’s plots and found to be in the range of 3.31 eV to 3.18 eV. They showed the red shift in the band edge on increase in zinc concentration. The PL spectra of ZnO thin films revealed the characteristic band edge emission centered at the 396 nm along with green emission centered at the 521 nm.