Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Mohd Anis x
Clear All Modify Search
Open access

Deepak Yadav, Suruchi Suri, Anis Chaudhary, Hemant, Mohd Beg, Veena Garg, Mohd Asif and Altaf Ahmad

Stimuli responsive polymeric nanoparticles in regulated drug delivery for cancer

Stimuli-responsive drug delivery system is a concept in which a drug is delivered at a suitable rate in response to stimuli. States of diseases may cause an alteration in some parameters of the body (e.g. in tumors) and the onset and offset of the drug delivery can be done by using this as a stimuli or a "trigger". Stimuli-responsive ("intellectual" or "sharp") resources and molecules show abrupt property changes in response to miniature changes in external stimuli such as pH, temperature etc. For regulated drug delivery, environmental stimuli such as pH and temperature, which undertake phase transition in polymer system, have been investigated. Thermally-responsive polymers can be tuned to a preferred temperature variety by copolymerization with a hydrophilic co-monomer or a hydrophobic co-monomer. Hydrophilic co-monomers increase the LCST while hydrophobic co-monomers decrease the LCST. The stimuli responsive polymer for regulated drug delivery can contain a polymer and copolymers having equilibrium of hydrophilic and hydrophobic groups. A number of these polymers have been investigated extensively and some success in drug delivery with them has been achieved, such as polymers and copolymers of N-isopropylacrylamide, PLGA, and PLA, HEMA etc. Thus this review is designed for stimuli pH and temperature responsive polymeric nanoparticles, which would be helpful to treat various cronic diseases such as cancer and others, for scientists in the field of the regulated drug delivery system.

Open access

Mohd Anis, G.G. Muley, Mohd Shkir, S. Alfaify and H.A. Ghramh

Abstract

Present investigation is aimed to explore the single crystal growth, microhardness and third order nonlinear optical (TONLO) properties of Nd3+ doped zinc tris-thiourea sulphate (ZTS) crystal. The commercial slow solvent evaporation technique has been chosen to grow a good quality ZTS (12 mm × 0.5 mm × 0.3 mm) and Nd3+ doped ZTS (11 mm × 0.6 mm × 0.4 mm) single crystals. Vickers microhardness test has been employed to analyze the influence of Nd3+ dopant on the hardness behavior of ZTS single crystal. The TONLO effects occurring in Nd3+ doped ZTS single crystal have been evaluated by means of Z-scan technique using a He–Ne laser operating at 632.8 nm. The close and open aperture Z-scan configuration have been used to determine the nature of TONLO refraction n2 and absorption β, respectively. The magnitudes of vital TONLO parameters, such as refraction n2, absorption coefficient β, figure of merit and susceptibility χ3 of the Nd3+ doped ZTS single crystal, have been determined using Z-scan transmittance data. The n2, β, and χ3 of Nd3+ doped ZTS single crystal were found to be of the order of 10−10 cm2/W, 10−6cm/W and 10−5 esu, respectively.

Open access

Imran Khan, S. Kalainathan, M.I. Baig, Mohd Shkir, S. Alfaify, H.A. Ghramh and Mohd Anis

Abstract

Present investigation has been started to perform the comparative study of pure and glycine doped KH2PO4 (KDP) single crystals grown by most commercial slow solvent evaporation technique. The grown crystals were subjected to single crystal X-ray diffraction analysis to determine their structural parameters. The linear optical studies of pure and glycine doped KDP crystal have been undertaken within 200 nm to 1100 nm wavelength range by means of UV-Vis studies. The enhancement in second harmonic generation (SHG) efficiency of glycine doped KDP crystal has been determined using a standard Kurtz-Perry powder test. The dielectric measurements have been carried out to explore the impact of glycine dopant on dielectric constant and dielectric loss of KDP crystal. The surface growth habitat and etch pit density of glycine doped KDP crystal have been evaluated using the results of microscopic etching studies. In light of obtained results the suitability of glycine doped KDP crystal for device applications has been discussed.

Open access

Mohd Anis, S.S. Hussaini, M.D. Shirsat and G.G. Muley

Abstract

The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC) crystals using nonlinear optical (NLO) and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS) and surface scanning electron microscopy (SEM) techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

Open access

S.M. Azhar, Mohd Anis, S.S. Hussaini, S. Kalainathan, M.D. Shirsat and G. Rabbani

Abstract

Glycine doped potassium thiourea chloride (PTC) crystal has been grown by slow solution evaporation technique. The dielectric studies have been employed to examine substantial improvement in dielectric constant and dielectric loss of glycine doped PTC crystal. The etching studies have been performed to investigate the surface quality of this crystal. The z-scan studies have been carried out at 632.8 nm to explore the third order nonlinear optical nature. The negative nonlinear refraction of glycine doped PTC crystal was found to be of 7.27 × 10−12 cm2/W. The origin of high magnitude of third order nonlinear optical susceptibility and reverse saturable nonlinear absorption have been investigated. The obtained results were explored to discuss the nonlinear optical applications of PTC crystal.