Search Results

1 - 3 of 3 items

  • Author: Mohanapriya Venkataraman x
Clear All Modify Search

Abstract

Thermal performance of aerogel-embedded polyester/polyethylene nonwoven fabrics in cross airflow was experimentally studied by using a laboratory-built dynamic heat transfer measuring device in which the fabric could be applied on a heating rod. Experiments were performed with different airflow velocities and heating conditions. The temperature–time histories of different materials were collected and compared. The temperature difference and convective heat transfer coefficient under continuous heating were analyzed and discussed. Results showed that under preheated conditions, the aerogel-embedded nonwoven fabrics had very small decrease in temperature and good ability to prevent against heat loss in cross flow. As for the continuous heating conditions, the heat transfer rate of each material showed an increasing trend with increase in the Reynolds number. The aerogel-treated nonwoven fabric with the least fabric thickness and aerogel content delivered a significantly increased heat transfer rate at higher Reynolds number. Thicker fabrics with higher aerogel content could provide better insulation ability in cross flow.

Abstract

In this study, polypropylene meltblown nonwoven fabrics with different structure parameters such as fiber diameter, pore size, and areal density were prepared by the industrial production line. The morphology of meltblown nonwoven fibers was evaluated by using scanning electron microscope, and the diameter of fibers was analyzed by using image-pro plus software from at least 200 measurements. The pore size of nonwoven fabric was characterized by a CFP-1500AE type pore size analyzer. The filtration efficiency and pressure drop were evaluated by TSI8130 automatic filter. The results showed that the pressure drop of nonwoven fabrics decreased with the increase in pore size; the filtration efficiency and the pressure drop had a positive correlation with the areal density. However, when the areal density is in the range of 27–29 g/m2, both filtration efficiency and pressure drop decreased with the increase of areal density; when the areal density was kept constant, the filtration efficiency decreased as the pore size decreased; when the pore size of the meltblown nonwoven fabric is less than 17 μm, the filtration efficiency increased as the pore diameter decreased; when the pore diameter of the nonwoven fabric is larger than 17 μm. In a wide range, the pressure drop decreased as the fiber diameter decreased.

Abstract

Polyvinylidene fluoride (PVDF) fibrous membranes with fiber diameter from nanoscale to microscale were prepared by electrospinning. The structural parameters of PVDF fibrous membrane in terms of fiber diameter, pore size and its distribution, porosity or packing density, thickness, and areal weight were tested. The relationship between solution concentration and structural parameters of fibrous membrane was analyzed. The filtration performance of PVDF fibrous membrane in terms of air permeability and filtration efficiency was evaluated. The results demonstrated that the higher solution concentration led to a larger fiber diameter and higher areal weight of fibrous membrane. However, no regular change was found in thickness, porosity, or pore size of fibrous membrane under different solution concentrations. The air permeability and filtration efficiency of fibrous membrane had positive correlations with pore size. The experimental results of filtration efficiency were compared with the predicted values from current theoretical models based on single fiber filtration efficiency. However, the predicted values did not have a good agreement with experimental results since the fiber diameter was in nanoscale and the ratio of particle size to fiber diameter was much larger than the value that the theoretical model requires.