Search Results

1 - 9 of 9 items

  • Author: Mirosław Nowakowski x
Clear All Modify Search

Unmanned Aerial Vehicle Used for Security Over the Baltic Sea

The paper presents new unmanned aerial vehicle (UAV) design for Regional and The Local Marine Fishery Inspectorates. Its specific design and maintenance specification allows to increase control abilities and will be the reason for increasing security of the sea sailing.

Abstract

The article discusses the main features of the applied simulation model of helicopter flight indicating references, where it was elaborated in detail. It focuses on presenting the simulation results of pull-up manoeuvre during which the helicopter does not respond correctly. The reasons for the behaviour as mentioned above were explained based on the results of calculations. The capabilities of the simulation model were used to determine the current loads of particular blades of the helicopter’s main rotor. The results were illustrated by maps of the angles of attack and aerodynamic lift on the surface of the main rotor and the distributions of these parameters along blades on characteristic azimuth for individual manoeuvre phases.

Abstract

Instytut Techniczny Wojsk Lotniczych has for years been engaged in research and development (R&D) aimed at the determination of wear-and-tear level that particular aircraft suffer from. The paper has been intended to present an innovative measuring-and-recording system to collect information on service loads that arise in structural components of the Su-22UM3K aircraft. Research work into loads in some selected structural components of the Su-22UM3K has been carried out with the KAM-500 measuring system applied. Modular design has been used to develop the system. This, in turn, allows of changes in the system’s configuration, according to what a measuring task requires. The flight testing of loads has covered items of tasks included in the flying training program for the Su- 22UM3K to collect/deliver data on an actual service profile and to determine representative strain-gauge measuring channels to be utilized in further aircraft’s service.

Abstract

The study outlines the technique for flight tests carried out for a plane powered by an electric drive and the method for standardization of performance parameters applicable to evaluation of test results. Due to the relatively new type of drive, which is an electric motor, the literature references provide no descriptions of such issues. Therefore the solutions presented in the paper are the own contribution of the research team from Air Force Institute of Technology (ITWL).

Abstract

The subject of the research was a catastrophic recorder of the S2-3a system for recording flight parameters, developed at the Air Force Institute of Technology. The article discusses tests of catastrophic recorders’ resilience to factors present at aircraft accidents. The document specifying the requirements for catastrophic recorders of flight parameters includes the defence standard: NO-16-A200, and the European standard: EuroCAE ED-112. According to NO-16-A200 and ED-112 standards, the protective unit should be resistant to: g-forces existing during crash, puncture, compression, fire, underwater pressure and aggressive liquids.

Abstract

The tendency to increase the temperature of gases and the desire to extend the service life forces the use of a protective coating on the blade. The publication presents the technology of applying a heat-resistant protective coating onto the jet engine turbine blade by means of plasma thermal spraying, taking into account the process of aluminizing and heat treatment after aluminizing. The paper presents the results of work on the possibilities of shaping the thickness of the protective coating on the blade by changing the parameters of the spraying process, such as spraying distance, amount of hydrogen, amount of argon and the number of torch passes.

Abstract

Aero Design is an annual student competition held by Society of Automotive Engineers in which the goal is to design and build a flying UAV capable of lifting the highest payload while observing lowest payload weight and fitting in a specified carrying case. The most important aspect in aircraft design is choosing suitable aerodynamic and mechanical configurations for example: aircraft and wing layout, airfoil with the correct Reynolds (in this case low) number, airframe, and landing gear construction. The article presents airfoil selection, trade studies, tail aerodynamic design, tail sizing, drag analysis, calculations of stability, stress analysis, propulsion selection and manufacturing of UAV prototype.

In particular, the comparison of different aircraft designs, effect of taper ratio on lift distribution, the design of wings, lift vs. angle of attack curves and. angle of attack curves, the aircraft tail surfaces, fuselage design are presented in the article. The aim of this study was to perform analysis of aerodynamic and mechanical of Micro Class UAV for Aerodesign International Competition. All projects will be doing in a prototype technology demonstrator was built to confirm our assumptions about airfoil’s performance. Flight tests were successful. Analytical model was made and put into an excel spreadsheet. Maximum predicted payload was estimated to be 5.5 pounds.

Abstract

The subject of this publication is a mathematical model of a pneumatic supply system for an emergency parachute system. This system is intended for a vertical take-off and landing UAV. An overview of emergency parachute landing system designs is presented in the introduction. Based on a schematic diagram and a 3D computer model, the construction and operation principles of an emergency parachute system, currently being developed at AFIT, was presented. A mathematical model, which enables the determination of the energy of gas (compressed CO2) stored in the accumulator tank was described. The conducted tests, which involved weighing the accumulator after filling with liquefied CO2 from a special cartridge and equivalent mass ejections were discussed. These tests involved recording the track of the equivalent mass movement and time necessary to determine velocity. The results of calculations regarding the equivalent mass energy imitating an emergency parachute, CO2 volume and mass in the accumulator in liquefied and gaseous state were presented. Based on the conducted calculations and the obtained characteristics, the developed mathematical model was assessed, and the final conclusions formulated.

Abstract

Aero Design is an annual student competition held by Society of Automotive Engineers in which the goal is to design and build a flying UAV capable of lifting the highest payload while observing lowest payload weight and fitting in a specified carrying case. To achieve that task teams have to choose between conflicting objectives that are lowest empty weight and highest lifting capacity. The rules state that design to enter the competition must be a fixed wing aircraft fitting in a box with inside dimensions of 24x18x8 inches. The payload bay has to be a rectangular block measuring 5x2x2 inches. There also is a limit of 55 pounds total weight with payload. The aircraft must take of either by hand launch or be propelled using a rubber tubing, than do a 360-degree circuit of the flying field and finally land within 200 feet landing zone. The article presents requirements analysis, weather research, design research, considered about launch method, wing layout and aircraft layout study (napkin sketches).