Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Michal Sněhota x
Clear All Modify Search
Open access

Vladimír Klípa, Michal Sněhota and Michal Dohnal

Abstract

Soil hydraulic conductivity is a key parameter to predict water flow through the soil profile. We have developed an automatic minidisk infiltrometer (AMI) to enable easy measurement of unsaturated hydraulic conductivity using the tension infiltrometer method in the field. AMI senses the cumulative infiltration by recording change in buoyancy force acting on a vertical solid bar fixed in the reservoir tube of the infiltrometer. Performance of the instrument was tested in the laboratory and in two contrasting catchments at three sites with different land use. Hydraulic conductivities determined using AMI were compared with earlier manually taken readings. The results of laboratory testing demonstrated high accuracy and robustness of the AMI measurement. Field testing of AMI proved the suitability of the instrument for use in the determination of sorptivity and near saturated hydraulic conductivity

Open access

Martina Sobotková, Michal Sněhota, Eva Budínová and Miroslav Tesař

Abstract

Isothermal and non-isothermal infiltration experiments with tracer breakthrough were carried out in the laboratory on one intact column (18.9 cm in diameter, 25 cm in height) of sandy loam soil. For the isothermal experiment, the temperature of the infiltrating water was 20°C to the initial temperature of the sample. For the two non-isothermal experiments water temperature was set at 8°C and 6°C, while the initial temperature of the sample was 22°C. The experiments were conducted under the same initial and boundary conditions. Pressure heads and temperatures were monitored in two depths (8.8 and 15.3 cm) inside the soil sample. Two additional temperature sensors monitored the entering and leaving temperatures of the water. Water drained freely through the perforated plate at the bottom of the sample by gravity and outflow was measured using a tipping bucket flowmeter. The permeability of the sample calculated for steady state stages of the experiment showed that the significant difference between water flow rates recorded during the two experiments could not only be justified by temperature induced changes of the water viscosity and density. The observed data points of the breakthrough curve were successfully fitted using the two-region physical non-equilibrium model. The results of the breakthrough curves showed similar asymmetric shapes under isothermal and non-isothermal conditions.