Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Michal Gierlik x
Clear All Modify Search
Open access

Ewa Laszynska, Slawomir Jednorog, Adam Ziolkowski, Michal Gierlik and Jacek Rzadkiewicz

Abstract

The neutron emission rate is a crucial parameter for most of the radiation sources that emit neutrons. In the case of large fusion devices the determination of this parameter is necessary for a proper assessment of the power release and the prediction for the neutron budget. The 14 MeV neutron generator will be used for calibration of neutron diagnostics at JET and ITER facilities. The stability of the neutron generator working parameters like emission and angular homogeneity affects the accuracy of calibration other neutron diagnostics. The aim of our experiment was to confirm the usefulness of yttrium activation method for monitoring of the neutron generator SODERN Model: GENIE 16. The reaction rate induced by neutrons inside the yttrium sample was indirectly measured by activation of the yttrium sample, and then by means of the γ-spectrometry method. The pre-calibrated HPGe detector was used to determine the yttrium radioactivity. The emissivity of neutron generator calculated on the basis of the measured radioactivity was compared with the value resulting from its electrical settings, and both of these values were found to be consistent. This allowed for a positive verification of the reaction cross section that was used to determine the reaction rate (6.45 × 10−21 reactions per second) and the neutron emission rate (1.04 × 108 n·s−1). Our study confirms usefulness of the yttrium activation method for monitoring of the neutron generator.