Search Results

1 - 3 of 3 items

  • Author: Michael Wink x
Clear All Modify Search
Phylogeny of Falconidae and phylogeography of Peregrine Falcons

Abstract

We first examine how falcons can be integrated into avian tree of life. Then we go one step further and investigate the position of Peregrine Falcons in a comprehensive phylogeny of the falcons (genus Falco), which was reconstructed on the basis of DNA sequences. Whether the 19 subspecies of the Peregrine Falcon can be identified genetically is examined in the next step. Recently, the question of Peregrine Falcon’s genetics in Central Europe has become of wider interest. Which subspecies was present before the collapse of populations and which currently after various reintroduction projects? Evidence is provided, that Central Europe constitutes a (natural) hybrid zone between F. p. brookei from the Mediterranean and F. p. peregrinus of northern Europe.

Open access
Influences of oceanic islands and the Pleistocene on the biogeography and evolution of two groups of Australasian parrots (Aves: Psittaciformes: Eclectus roratus, Trichoglossus haematodus complex). Rapid evolution and implications for taxonomy and conservation

Abstract

The Australasian region is a centre of biodiversity and endemism, mainly based on the tropical climate in combination with the large amount of islands. During the Pleistocene, islands of the Sahul Shelf (Australia, New Guinea, Aru Islands) had been part of the same land mass, while islands within the Wallacea (Lesser Sunda Islands, Moluccas, Sulawesi etc.) remained isolated. We investigated biogeographical avian diversification patterns of two species complexes across the Wallacea and the Sahul Shelf: the Eclectus Parrot Eclectus roratus Wagler, 1832, and the Rainbow Lorikeet Trichoglossus haematodus Linnaeus, 1771. Both species are represented by a large number of described geographical subspecies. We used mitochondrial cytochrome b (cyt b) sequences for phylogenetic and network analysis to detect biogeographic roles of islands and avian diversification patterns. The number of threatened taxa in this region is increasing rapidly and there is an urgent need for (sub-)species conservation in this region. Our study provides first genetic evidence for treating several island taxa as distinct species. In both species complexes similar genetic patterns were detected. Genetic diversification was higher across the islands of the Wallacea than across the islands of the Sahul Shelf. Divergence in E. roratus can be dated back about 1.38 million years ago, whereas in the younger T. haematodus it was 0.80 million years ago. Long distance dispersal was the most likely event for distribution patterns across the Wallacea and Sahul Shelf. The geographic origin of the species-complex Eclectus roratus spp. is supposed to be Wallacean, but for the species-complex Trichoglossus haematodus spp. it is supposed to be non-Wallacean. Trichoglossus euteles, so far considered a distinct species, clearly belongs to the Trichoglossus-haematodus-complex. The only case of sympatry in the complex is the distribution of T. (h.) euteles and T. h. capistratus on Timor, which means a rapid evolution from one ancestor into two distinct species within only 800,000 years. For all other taxa a Checkerboard distribution pattern is present. In this complex, 8 taxa are already treated as separate species (del Hoyo et al. 2014). Based on genetic evidence, the following populations are supported to represent phylogenetic units: (1) N New Guinea (haematodus) incl. Biak (rosenbergii), Bismarck Archipelago (massena), and New Caledonia (deplanchii); (2) Flores (weberi); (3) E Australia (moluccanus) incl. Aru Islands (nigrogularis) and S New Guinea (caeruleiceps); (4) N Australia (rubritorquis); (5) Timor 1st lineage (capistratus) incl. Sumba (fortis); (6) Bali and Lombok (mitchellii); (7) Sumbawa (forsteni); (8) Timor 2nd lineage (euteles). Those 8 phylogenetic units are not identical to the 8 species listed by del Hoyo et al. (2014). Several populations on smaller islands are under decline, a separate species status may lead to a higher conservation status in both species complexes, which are currently listed as “Least Concern”. Eclectus roratus is currently treated as monospecific. Based on genetic evidence, the following populations are suggested being treated as valid species: (1) Sumba (Eclectus cornelia), (2) Tanimbar Islands (E. riedeli), (3) Moluccas (E. roratus), and (4) New Guinea (E. polychloros incl. Aru Islands (E. aruensis), and Solomon Island (E. solomonensis).

Open access
Effects of cold winters and roost site stability on population development of non-native Asian ring-necked parakeets (Alexandrinus manillensis) in temperate Central Europe – results of a 16-year census

Abstract

Asian ring-necked parakeets (Alexandrinus manillensis, formerly Psittacula krameri, hereafter RNP) first bred in Germany in 1969. Since then, RNP numbers increased in all three major German subpopulations (Rhineland, Rhine-Main, Rhine-Neckar) over the period 2003-2018. In the Rhine-Neckar region, the population increased to more than fivefold within only 15 years. Interestingly, there was no significant breeding range expansion of RNP in the period 2010-2018. In 2018, the total number of RNP in Germany amounted to >16,200 birds. Differences in RNP censuses between years were evident. Surprisingly, cold winters (extreme value, −13.7 °C) and cold weather conditions in the breeding season (coldest month average, −1.36 °C) were not able to explain between-year variation. This finding suggests that in general winter mortality is low - with exceptions for winters 2008/2009 and 2009/2010, and a population-relevant loss of broods is low in our study population. Surprisingly, the social behaviour in terms of spatio-temporal stability of roost sites could well explain positive and negative population trends. Years of spatially stable and regularly used roost sites seem to correlate with increasing population sizes. In contrast, known shifts of RNP among different roost sites or the formations of new roost sites by split are related to population stagnation or a decrease in numbers. Climate change may lead to further range expansion as cities not suitable yet for RNP may become so in the near future.”

Open access