Search Results

1 - 3 of 3 items

  • Author: Michał Wojciechowski x
Clear All Modify Search


The problem of reads mapping to a reference genome is one of the most essential problems in modern computational biology. The most popular algorithms used to solve this problem are based on the Burrows-Wheeler transform and the FM-index. However, this causes some issues with highly mutated sequences due to a limited number of mutations allowed. G-MAPSEQ is a novel, hybrid algorithm combining two interesting methods: alignment-free sequence comparison and an ultra fast sequence alignment. The former is a fast heuristic algorithm which uses k-mer characteristics of nucleotide sequences to find potential mapping places. The latter is a very fast GPU implementation of sequence alignment used to verify the correctness of these mapping positions. The source code of G-MAPSEQ along with other bioinformatic software is available at:


The extortions that result in the vibrations of a hull of the combat vehicle have an impact on the tracked combat vehicle during the off-road driving. They may have a negative impact on the crew, internal equipment, shooting accuracy. A level of the hull loads depends on quality of the suspension system, which main responsibility consists in minimising an amplitude of the vibrations. Therefore, it is necessary both to improve a structure of the suspension system, and its components, as well as their optimisation.

The tests of the driving smoothness of the vehicle and quality of the suspension elements can be realised both within a frame of the model tests and while driving in the real conditions. The assessment criteria of the driving smoothness are directly related to the negative influence of the vibrations to the human body. The suspension quality should be assumed both upon an execution of the vehicle prototype, and during the design or modernisation phase. It results both in reducing the time, and minimisation of the costs and risk related to the structure development. The model tests enable to evaluate the driving smoothness and comfort prior to an execution of the prototype. The tests on the test tracks in the final phase of the development are carried out in order to evaluate the driving smoothness.


The problem of DNA sequence assembly is well known for its high complexity. Experimental errors of di erent kinds present in data and huge sizes of the problem instances make this problem very hard to solve. In order to deal with such data, advanced efficient heuristics must be constructed. Here, we propose a new approach to the sequence assembly problem, modeled as the problem of searching for paths in an acyclic digraph. Since the graph representing an assembly instance is not acyclic in general, it is heuristically transformed into the acyclic form. This approach reduces the time of computations significantly and allows to maintain high quality of produced solutions.