Search Results

1 - 10 of 21 items

  • Author: Michał Mazur x
Clear All Modify Search
The Instrumental and Ideological Politicisation of Senior Positions in Poland’s Civil Service and its Selected Consequences

Abstract

The article focuses on the problem of the civil service’s dependence on its political superiors in Poland in 1996–2017. It aims to analyse the motivations of politicians responsible for civil service reforms and to assess the impact of these reforms on the effectiveness of the corps’ functioning. The authors conceptualise the problem of politicisation of the civil service by referring to the theory of politicisation adding an extra dimension of political ideas and institutions as an important factor of change in Poland’s public administration system. The article describes the stages of civil service reform in Poland over the last twenty years, taking into account the political context, the most important postulated changes and the associated controversies with reference to the concepts outlined in the theoretical part. The study also comprises a relevant literature review based on a number of sources, including the reports published by the Head of the Civil Service in Poland, international databases (including Quality of Government) and specialist reports with a particular emphasis on research devoted to Central Europe. The findings paint a multi-layered and nuanced picture of the evolution of the Polish civil service and its strong associations with the issue of the so-called “unfinished transformation”. In addition the article confirms that both the instrumentalisation of institutions by the “camp” of political opportunists and their formal, radical reconstruction by the “ideological contrarians” resulting in the centralisation of power around the ruling parties have had a negative effect on the quality of civil service functioning in Poland.

Open access
Structural and surface properties of TiO2 thin films doped with neodymium deposited by reactive magnetron sputtering

Abstract

Thin films were deposited using modified, high energy magnetron sputtering method from Ti-Nd mosaic targets. The amount of neodymium dopant incorporated into two sets of thin films was estimated to be 0.8 and 8.5 at.%, by means of energy dispersive spectroscopy. On the basis of x-ray diffraction method, the type of crystalline structure and crystallites size were evaluated directly after the deposition process and after additional post-process annealing at 800 °C temperature. The influence of annealing on the surface properties was evaluated with the aid of atomic force microscopy. Uniformity of the dopant distribution in titanium dioxide matrix was examined with the aid of secondary ion mass spectroscopy. Additionally, using atomic force microscope, diversification and roughness of the surface was determined. Chemical bonds energy at the surface of TiO2:Nd thin films was investigated by x-ray photoelectron spectroscopy method. Wettability measurements were performed to determine contact angles, critical surface tensions and surface free energy of prepared coatings. On the basis of performed investigations it was found, that both factors, the amount of neodymium dopant and the post-process annealing, fundamentally influenced the physicochemical properties of prepared thin films.

Open access
Modelling and analysis of lower limb joint loads during the Naeryo chagi technique in taekwondo

Summary

Study aim: estimate reaction forces and muscle torque in lower limb joints during the Naeryo chagi technique in taekwondo.

Material and methods: the parameters of the Naeryo chagi kick were measured with a Vicon motion tracking system comprising ten MX T40S cameras, two reference cameras and four AMTI BP600900-2000 force plates. Additional measurements were performed using the BTS-4AP-2K force analysis system equipped with a WB-4AP punching bag. The acquired raw data were processed and synchronized using Matlab v.R2007a software. A computer simulation created on the basis of the adopted mathematical model was used to identify reaction forces and control moments.

Results: the highest joint loads occurred at the moment when the striking leg reversed its movement direction from rising to rapidly falling towards the target. The knee and ankle joints of the supporting leg were subject to greatest reaction forces and muscle torque.

Conclusions: it is recommended to follow an exercise routine aimed at strengthening and stabilizing the structures of motor system subject to the greatest load.

Open access
Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

Abstract

In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10−2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

Open access
Influence of the structural and surface properties on photocatalytic activity of TiO2:Nd thin films

Abstract

Titanium dioxide thin films doped with the same amount of neodymium were prepared using two different magnetron sputtering methods. Thin films of anatase structure were deposited with the aid of Low Pressure Hot Target Magnetron Sputtering, while rutile coatings were manufactured using High Energy Reactive Magnetron Sputtering process. The thin films composition was determined by energy dispersive spectroscopy and the amount of the dopant was equal to 1 at. %. Structural properties were evaluated using transmission electron microscopy and revealed that anatase films had fibrous structure, while rutile had densely packed columnar structure. Atomic force microscopy investigations showed that the surface of both films was homogenous and consisted of nanocrystalline grains. Photocatalytic activity was assessed based on the phenol decomposition. Results showed that both thin films were photocatalytically active, however coating with anatase phase decomposed higher amount of phenol. The transparency of both thin films was high and equal to ca. 80% in the visible wavelength range. The photoluminescence intensity was much higher in case of the coating with rutile structure.

Open access
The assessment of muscle strength symmetry in kayakers and canoeists

Summary

Study aim: To determine and compare the muscle strength profile and muscle strength symmetry of kayakers and canoeists.

Material and methods: A total of 36 male participants participated in the study, including 25 kayakers and 9 canoeists. Measurements of maximum muscle torque were taken under static conditions for 10 muscle groups: flexors and extensors of the elbow, shoulder, knee, hip, and trunk. Muscle torque was allometrically scaled by body mass. To determine the muscle strength profiles of athletes in both disciplines, residual analysis was used. Two methods were utilized to assess and compare the muscle strength symmetry between left and right limbs. The first one is known as intraclass correlation coefficient (ICC). The second one is an asymmetry coefficient proposed by authors.

Results: The study showed that kayakers obtained lower rates of asymmetry indicators than canoeists in most muscle groups. An overall asymmetry coefficient amounted to 0.77 ± 0.20 and 0.99 ± 0.31 (p < 0.05) for kayakers and canoeists, respectively. Moreover, it was observed that the kayakers and canoeists had similar strength profile. The symmetry assessment of maximum muscle torque corresponds to the characteristics of the studied disciplines.

Conclusions: The intraclass correlation coefficient is recommended as a measure of strength symmetry for muscle groups comparisons. The asymmetry coefficient is recommended for comparison of individuals.

Open access
Influence of magnetron powering mode on various properties of TiO2 thin films

Abstract

In this paper, comparative studies on the structural, surface, optical, mechanical and corrosion properties of titanium dioxide (TiO2) thin films deposited by continuous and sequential magnetron sputtering processes were presented. In case of continuous process, magnetron was continuously supplied with voltage for 90 min. In turn, in sequential process, the voltage was supplied for 1 s alternately with 1 s break, therefore, the total time of the process was extended to 180 min. The TiO2 thin films were crack free, exhibited good adherence to the substrate and the surface morphology was homogeneous. Structural analysis showed that there were no major differences in the microstructure between coatings deposited in continuous and sequential processes. Both films exhibited nanocrystalline anatase structure with crystallite sizes of ca. 21 nm. Deposited coatings had high transparency in the visible wavelength range. Significant differences were observed in porosity (lower for sequential process), scratch resistance (better for sequential process), mechanical performance, i.e. hardness:elastic modulus ratio (higher for sequential process) and corrosion resistance (better for sequential process).

Open access
Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process

Abstract

Titanium dioxide thin films were prepared using two types of magnetron sputtering processes: conventional and with modulated plasma. The films were deposited on SiO2 and Si substrates. X-ray diffraction measurements of prepared coatings revealed that the films prepared using both methods were nanocrystalline. However, the coatings deposited using conventional magnetron sputtering had anatase structure, while application of sputtering with modulated plasma made possible to obtain films with rutile phase. Investigations performed with the aid of scanning electron microscope showed significant difference in the surface morphology as well as the microstructure at the thin film cross-sections. The mechanical properties of the obtained coatings were determined on the basis of nanoindentation and abrasion resistance tests. The hardness was much higher for the films with the rutile structure, while the scratch resistance was similar in both cases. Optical properties were evaluated on the basis of transmittance measurements and showed that both coatings were well transparent in a visible wavelength range. Refractive index and extinction coefficient were higher for TiO2 with rutile structure.

Open access
Changes of strength and maximum power of lower extremities in adolescent handball players during a two-year training cycle

Abstract

The aim of the study was to investigate changes of strength and power of the lower extremities in adolescent handball players during a two-year training cycle. Thirty-one male handball players (age 16.0 ± 0.2 years, body mass 81.4 ± 9.7 kg, body height 188.2 ± 6.4 cm) took part in this study. All tests were conducted three times at the beginning of a one-year training programme. The maximum joint torque (JT) of flexors and extensors of the elbow, shoulder, hip, knee and trunk was measured under static conditions. Power of lower extremities was assessed with a repeated sprint ability (RSA) test on a cycloergometer and jump tests: akimbo counter-movement jump (ACMJ), counter-movement jump (CMJ) and spike jump tests on a force plate. Peak power (PP) increased from 914.8 ± 93.9 to 970.0 ± 89.2 and 1037.8 ± 114.4 W (p < 0.05) following the RSA test results. Maximum power increased significantly (p < 0.05) in ACMJ (1951.9 ± 359.7 to 2141.9 ± 378.5 and 2268.5 ± 395.9 W) and CMJ tests (2646.3 ± 415.6 to 2831.2 ± 510.8 and 3064.6 ± 444.5 W). Although significant differences in JT (p < 0.05) were observed during the two year period, their values related to body mass for the lower right extremity, sum of the trunk and sum of all muscle groups increased significantly between the first and the second measurement (from 13.7 ± 1.8 to 14.58 ± 1.99 N·m·kg-1, from 9.3 ± 1.5 to 10.39 ± 2.16 N·m·kg-1, from 43.4 ± 5.2 to 46.31 ± 6.83 N·m·kg-1, respectively). The main finding of the study is that PP in the RSA test and maximal power in the ACMJ and CMJ increase in relation to training experience and age in the group of youth handball players.

Open access
Comparison of two boxing training simulators

Summary

Study aim: the aim of the study was to compare two methods for measuring punching and kicking force and the reaction time of athletes.

Material and methods: both systems were designed to measure and to analyse the mechanical characteristics of punches and strikes delivered by upper and lower limbs to a punching bag. The main difference between both punching bags was the way in which the delivered force was measured. The first method used strain gauges while the second method used accelerometer technology. Both systems consisted of a punching bag with software, attached signal diodes, and either embedded accelerometers or strain gauges. The bags were of different sizes. Acceleration transducers and gyroscopes or strain gauges were placed inside the punching bags, which allowed for measuring dynamics while the bag was struck. The software calculated strike force, the point of force application and its direction, and reaction time. Both systems were tested.

Results: the results of the accelerometer-based method show that the mean relative error of force calculation amounts to 3%. The measurement error of acceleration is less than 1%. The mean relative measurement error of the striking surface on the punching bag is 2%. However, the measurement error of force recorded with the strain gauge-based method is less than 1%. The results show that both systems are similar.

Conclusions: the punching bag having an embedded accelerometer is equipped with more versatile software, which makes the system a good tool for practical application in combat sport training.

Open access