Search Results

1 - 3 of 3 items

  • Author: Michał Gęca x
Clear All Modify Search

Abstract

Homogeneous Charge Compression Ignition (HCCI) is a promising low temperature combustion technology which offers high fuel efficiency and extremely low exhaust emissions. However, there are still some pending issues to be resolved before the technology will achieve mass production level. Namely, combustion controllability should be improved and HCCI operating range should be widen. The latter is constrained by excessive combustion rates under high loads. In this study, advanced variable valve actuation strategies were applied to control auto-ignition timings and combustion rates. The examinations were conducted using single-cylinder research engine fuelled with directly injected gasoline. The HCCI combustion was achieved using negative valve overlap technique. The engine was run under boosted conditions, in an operation regime where acceptable pressure rise rate (PRR) level is usually exceeded. Selected valve timing sweeps were carried out within a scope of the experiments to evaluate PRR reduction potential. The obtained results manifested superior combustion controllability. Late exhaust valve closing enabled reduction of the amount of internally re-circulated exhaust, which propagated to the main event combustion. From the intake side, two effects were observed, i.e. variability of the intake air aspiration and variability of the apparent compression ratio. Both phenomena were found to affect combustion timings and rates.

Abstract

This paper presents the methodology and investigation of the sound power level produced by a radial piston aircraft engine operating at varied speeds. The research model aircraft engine of a maximum power of 5.5 kW with a two-bladed airscrew was placed on a test bend. Its sound power level was calculated from the sound pressure level measured at 9 measurement points distributed on a hemispherical surface in a confined space in line with PN-EN 3744. Mean sound power generated by the ASP FS400AR engine is 96 dB at idle (2,880 rpm) and 105 dB at a cruising speed (4,740 rpm). Accordingly, it can be concluded that a sound level meter registered a higher sound power level at the points in front of the model aircraft engine than at the points behind it, whereas the lowest sound power level was registered directly above the engine.

Abstract

The article presents assumptions of the one-dimensional model of the ASz-62IR aircraft engine. This model was developed in the AVL BOOST software. The ASz-62IR is a nine cylinder, aircraft engine in a radial configuration. It is produced by the Polish company WSK “PZL-Kalisz” S. A. The model is used for calculating parameters of the fuel stream and the air stream in intake system of the engine, as well as for the analyses of the combustion process and the exhaust flow to the external environment. The model is based on the equations describing the isentropic flow. The geometry of the channels and all parts of the model has been mapped on the basis of empirical measurements of the engine elements. The model assumes indirect injection where the gasoline was used as a fuel with the calorific value of 43.5 MJ/kg. The model assumes a mixture of a stoichiometric ratio of 14.5. This model is only part of the overall the ASz-62IR engine model. After the simulation tests on the full model the obtained results confirmed the correctness of the model used to create the mixture. It was found that the AVL BOOST software is good for the implementation of this type of work.