Search Results

1 - 3 of 3 items

  • Author: Michał A. Gryziński x
Clear All Modify Search

Abstract

A model of REM-2-type chamber was modeled with MCNPX code to study the dose-response to monoenergetic neutrons in wide energy range from thermal to 20 MeV for various compositions of gas in the chamber. The energy dependence of the total dose absorbed in the filling gas was compared with the energy dependence of ambient absorbed dose D*(10) and with experimental data. The results of the studies will be useful for designing new, improved generation of recombination chambers.

Abstract

This paper presents the set of procedures developed in Radiation Protection Measurements Laboratory at National Centre for Nuclear Research for evaluation of shielding properties of high performance concrete. The purpose of such procedure is to characterize the material behaviour against gamma and neutron radiation. The range of the densities of the concrete specimens was from 2300 to 3900 kg/m3. The shielding properties against photons were evaluated using 137Cs and 60Co sources. The neutron radiation measurements have been performed by measuring the transmitted radiation from 239PuBe source. Scattered neutron radiation has been evaluated using the shadow cone technique. A set up of ionization chambers was used during all experiments. The gamma dose was measured using C-CO2 ionization chamber. The neutron dose was evaluated with recombination chamber of REM-2 type with appropriate recombination method applied. The method to distinguish gamma and neutron absorbed dose components in mixed radiation fields using twin detector method was presented. Also, recombination microdosimetric method was applied for the obtained results. Procedures to establish consecutive half value layers and tenth value layers (HVL and TVL) for gamma and neutron radiation were presented. Measured HVL and TVL values were linked with concrete density to highlight well known dependence. Also, influence of specific admixtures to concrete on neutron attenuation properties was studied. The results confirmed the feasibility of approach for the radiation shielding investigations.

Abstract

This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland). The measurements of H*(10) were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II) and NM2 FHT 192 gamma probe and with stationary dosimetric system.