Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Mehdi Ahmadi x
Clear All Modify Search
Open access

Seyed Ahmadi and Mehdi Karrari

A Multiple-Model Approach for Synchronous Generator Nonlinear System Identification

In this paper, a multiple model approach is proposed for the identification of synchronous generators. In the literature, the same structure often is used for all local models. Therefore, to obtain a precise model for the operating condition of the synchronous generator with severely nonlinear behavior, many local models are required. The proposed method determines the complexity of local models based on complexity of behavior of the synchronous generator at different operating conditions. There are two choices for increasing model precision at each iteration of the proposed method: (i) increasing the number of local models in one region, or (ii) increasing local model complexity in the same region. The proposed method has been tested on experimental data collected on a 3 kVA micro-machine. In the study, the field voltage is considered as the input and the active output power and the terminal voltage are considered as the outputs of the synchronous generator. The proposed method provides a more precise model with fewer parameters compared to some well known methods such as LOLIMOT and global polynomial models.

Open access

Narjes Shahheidar, Sahand Jorfi, Afshin Takdastan, Neemat Jaafarzadeh and Mehdi Ahmadi

Abstract

Sludge conditioning is an important stage in sludge management. In the present study, a sequence of freeze/thaw-electro-Fenton process was designed and specific resistance filtration (SRF) was monitored during sludge conditioning as an important factor in sludge dewaterability. Furthermore, protein and polysaccharide concentrations were measured during the experiments. Results showed that the lowest SRF value contributed to −10°C in freezing process which showed a reducing trend by decreasing solution pH. In addition, results revealed that solution pH less than 3 caused a significant improvement in sludge dewatering; so the lowest SRF has been registered at pH = 2. By increasing current intensity from 0.5 to 1A, SRF values were reduced and then followed by an enhancement with increasing current intensity to 3.2 A. The lowest SRF value (6.1 × 104 m/kg) was obtained at H2O2 = 30 mg/L which was the best conditions for sludge dewatering.

Open access

Sahand Jorfi, Sudabeh Pourfadakari, Mehdi Ahmadi and Hamideh Akbari

Abstract

Thermally activated persulfate efficiency for the treatment of a recalcitrant high TDS wastewater was investigated. The specific character of studied wastewater was high TDS content of around 23820 mg/L and BOD5/COD ratio of 0.07. Effective operational parameters including initial pH values of 3–9, reaction temperature of 40–80°C and persulfate concentrations of 0.5–5 g/L for COD removal were investigated in batch mode experiments. Removal efficiency was pH and temperature dependent. The COD and TOC removal of 94.3% and 82.8% were obtained at persulfate concentration of 4 g/L, initial pH value of 5 and temperature of 70°C after 180 min for initial COD concentration of 1410 mg/L. The pseudo first-order kinetic model was best fitted with COD removal (R2 = 0.94).

Open access

Mehdi Ahmadi, Kurosh Rahmani, Ayat Rahmani and Hasan Rahmani

Abstract

In this paper, the removal of benzotriazole (BTA) was investigated by a Photo-Fenton process using nano zero valent iron (NZVI) and optimization by response surface methodology based on Box-Behnken method. Effect of operating parameters affecting removal efficiency such as H2O2, NZVI, and BTA concentrations as well as pH was studied. All the experiments were performed in the presence of ultraviolet radiation. Predicted levels and BTA removal were found to be in good agreement with the experimental levels (R2 = 0. 9500). The optimal parameters were determined at 60 min reaction time, 15 mg L-1 BTA, 0.10 g L-1 NZVI, and 1.5 mmol L-1 H2O2 for Photo-Fenton-like reaction. NZVI was characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) images, and scanning electron microscope (SEM) analysis.