Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mathias Humbert x
Clear All Modify Search
Open access

Ahmed Salem, Pascal Berrang, Mathias Humbert and Michael Backes

Abstract

The decreasing costs of molecular profiling have fueled the biomedical research community with a plethora of new types of biomedical data, enabling a breakthrough towards more precise and personalized medicine. Naturally, the increasing availability of data also enables physicians to compare patients’ data and treatments easily and to find similar patients in order to propose the optimal therapy. Such similar patient queries (SPQs) are of utmost importance to medical practice and will be relied upon in future health information exchange systems. While privacy-preserving solutions have been previously studied, those are limited to genomic data, ignoring the different newly available types of biomedical data.

In this paper, we propose new cryptographic techniques for finding similar patients in a privacy-preserving manner with various types of biomedical data, including genomic, epigenomic and transcriptomic data as well as their combination. We design protocols for two of the most common similarity metrics in biomedicine: the Euclidean distance and Pearson correlation coefficient. Moreover, unlike previous approaches, we account for the fact that certain locations contribute differently to a given disease or phenotype by allowing to limit the query to the relevant locations and to assign them different weights. Our protocols are specifically designed to be highly efficient in terms of communication and bandwidth, requiring only one or two rounds of communication and thus enabling scalable parallel queries. We rigorously prove our protocols to be secure based on cryptographic games and instantiate our technique with three of the most important types of biomedical data – namely DNA, microRNA expression, and DNA methylation. Our experimental results show that our protocols can compute a similarity query over a typical number of positions against a database of 1,000 patients in a few seconds. Finally, we propose and formalize strategies to mitigate the threat of malicious users or hospitals.

Open access

Mathias Humbert, Kévin Huguenin, Joachim Hugonot, Erman Ayday and Jean-Pierre Hubaux

Abstract

People increasingly have their genomes sequenced and some of them share their genomic data online. They do so for various purposes, including to find relatives and to help advance genomic research. An individual’s genome carries very sensitive, private information such as its owner’s susceptibility to diseases, which could be used for discrimination. Therefore, genomic databases are often anonymized. However, an individual’s genotype is also linked to visible phenotypic traits, such as eye or hair color, which can be used to re-identify users in anonymized public genomic databases, thus raising severe privacy issues. For instance, an adversary can identify a target’s genome using known her phenotypic traits and subsequently infer her susceptibility to Alzheimer’s disease. In this paper, we quantify, based on various phenotypic traits, the extent of this threat in several scenarios by implementing de-anonymization attacks on a genomic database of OpenSNP users sequenced by 23andMe. Our experimental results show that the proportion of correct matches reaches 23% with a supervised approach in a database of 50 participants. Our approach outperforms the baseline by a factor of four, in terms of the proportion of correct matches, in most scenarios. We also evaluate the adversary’s ability to predict individuals’ predisposition to Alzheimer’s disease, and we observe that the inference error can be halved compared to the baseline. We also analyze the effect of the number of known phenotypic traits on the success rate of the attack. As progress is made in genomic research, especially for genotype-phenotype associations, the threat presented in this paper will become more serious.