Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Mariusz Kuglarz x
Clear All Modify Search
Open access

Mariusz Kuglarz, Klaudiusz Grübel and Jolanta Bohdziewicz

Abstract

The aim of the study was to develop an effective treatment of post-digestion liquors highly-loaded with biogenic and organic substances. The scope of the research project encompassed: mesophilic anaerobic digestion of waste activated sludge (WAS) as well as the treatment of post-digestion liquors, coming from the most appropriate HRT value of 25 days, in the process of ammonium magnesium phosphate (struvite) precipitation targeted at ammonia nitrogen binding and a subsequent reverse osmosis (RO) process. It was established that the method combining chemical precipitation and high-pressure filtration ensures a high degree of contaminants removal allowing for a direct release of treated liquors into the natural reservoir. However, in order to decrease the residual NH4 + concentration (6.1 mg NH4 +/dm3) in the purified post-digestion liquors below the level allowing for a direct release to the natural reservoir, it turned out to be necessary to apply increased molar ratio of magnesium and phosphates (Mg:NH4 +: PO4 3-= 1.5:1:1.5).

Open access

Jolanta Bohdziewicz, Mariusz Kuglarz and Klaudiusz Grűbel

Abstract

The article presents the results of determining the most appropriate conditions of microwave sludge pre-treatment (500-1200 W), prior to its anaerobic digestion in a continuous mode. The assessment of the pre-treatment conditions (microwave power, sludge temperature after pre-treatment) was based on: the release of organic (COD, protein) and inorganic (NH4 +, PO4 3-) substances into liquid, the quantity of methane produced, sludge higienisation and the susceptibility of the pre-treated sludge to dewatering. The power of the microwaves applied did not play significant role on the pre-treatment effectiveness. Taking into account the fact that sludge pre-treatment by microwave irradiation requires the delivery of energy, the pre-treatment by microwaves of higher power (1200 W) and resulting in sludge temperature of 70°C was recommended for further experiments. Sludge pre-treatment by means of microwave irradiation as a pre-treatment step influenced the effectiveness of the subsequent anaerobic digestion, conducted in continuous conditions, in a positive way. The largest amount of biogas was obtained for HRT in the range of 15-20 days. As compared to the sludge which did not undergo pre-treatment, daily biogas production and biogas yield increased by 18-41% and 13-35% respectively. The combination of microwave pre-treatment and mesophilic anaerobic digestion ensured the elimination of pathogens (Salmonella spp., Escherichia coli).

Open access

Mariusz Kuglarz and Klaudiusz Grübel

Abstract

The aim of this study was to develop an effective thermochemical method for treatment of industrial hemp, in order to increase its bioconversion to biofuels and bio-products. Industrial hemp was subjected to various thermochemical pretreatments using: alkaline (3 % NaOH), oxidative (3 % H2O2 at pH 11.5) and glycerol-based methods (70-90 % of glycerol, 1-3 % NaOH), prior to enzymatic hydrolysis with Cellic® CTec2/Cellic® HTec2 (15 FPU∙g−1 glucan). Innovative pretreatment with glycerol fraction (80 % glycerol content, 2 % NaOH, 12.5 % biomass loading) showed to be superior over commonly used alkaline and oxidative methods with respect to by-products generation and sugar losses. Integrated process of ethanol production from enriched cellulose fraction (172 kg EtOH∙Mg−1 of dry hemp) and succinic production from xylose-rich residue after ethanol fermentation (59 kg∙Mg−1 of dry hemp) allowed to convert about 97 % of sugars released (glucose and xylose) during enzymatic hydrolysis of pre-treated biomass. The present study showed that it is possible to replace 50 % of the costly yeast extract, used during succinic fermentation as nitrogen source, by alternative nitrogen source (rapeseed cakes) without significant deterioration of succinic yield. Pretreatment liquor after lignin precipitation (52 kg∙Mg−1 of biomass treated) exhibited a high biodegradability (92 %) and allowed to produce 420 m3 CH4/Mg VS). Results obtained in this study clearly document the possibility of biofuels (bioethanol, biogas) and bio-chemicals production from industrial hemp, in a biorefinery approach.