Search Results

1 - 6 of 6 items

  • Author: Mariusz J. Nawrocki x
Clear All Modify Search
Analysis of fructose and mannose – regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro

Abstract

The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the compound process responsible for proper oocytes transport and successful fertilization. However, the main mechanisms which regulated this process are still not entirely known. Moreover, the OECs metabolism, which may be identified as the “cellular activity” marker, is poorly recognized. In this study we investigated the fructose and mannose metabolic pathway in porcine OECs primary long-term cultured in vitro.

In our study, we employ a primary long term in vitro culture (IVC) and microarray approach (the Affymetrix microarray were used for analysis of transcriptomic profile of OECs) for expression levels analysis.

We found that from the whole analyzed transcriptome, 1537 genes were upregulated and 995 were down regulated after 7 days of culture, 1471 genes were upregulated and 1061 were downregulated after 15 days of culture and 1329 genes were upregulated and 1203 were downregulated after 30 days of culture. Moreover, the differential expression of SORD, FPGT, PFKFB4, TPI1, MPI, ALDOC, HK2 and PFKFB3 at 24 hours, 7 day, 15 day and 30 day, was also observed.

We suggested that fructose and mannose metabolism may be important molecular bio-marker of porcine OECs capability in in vitro model. The metabolic profile is significantly accompanied by cells proliferation in vitro. The transcriptomic profile of SORD, FPGT, PFKFB4, TPI1, MPI, ALDOC, HK2 and PFKFB3 expression may be identified as “fingerprint” of fructose and mannose metabolism in OECs as well as involved in cellular in vitro developmental capacity in pigs.

Open access
The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation

Abstract

The mammalian oocytes undergo significant biochemical and structural modifications during maturation both in vitro and in vivo. These changes involve chromatin reorganization and modification within metabolic status of cytoplasmic organelles. After oocytes’ successful maturation the substantially increased storage of RNA was observed. Moreover, the early embryo interaction with maternal endometrial tissue after fertilization is up to now considered as the main marker of proper embryo implantation and early growth. In this study, we first investigated the expression profile of genes involved in blood vessel formation and blood circulation in porcine oocytes before and after in vitro maturation.

The cumulus-oocyte complexes were collected from pubertal Landrace gilts and classified as before in vitro maturation (in Vivo) or after in vitro maturation (in Vitro). The RNA was isolated from these two experimental groups and analyzed using Affymetrix microarrays.

We found an increased expression of genes involved in ontological groups such as “blood circulation” (TPM1, ECE1, ACTA2, EPHX2, EDNRA, NPR2, MYOF, TACR3, VEGFA, GUCY1B3), “blood vessel development” (ANGPTL4, CYR61, SEMA5A, ID1, RHOB, RTN4, IHH, ANGPT2, EDNRA, TGFBR3, MYO1E, MMP14), and “blood vessels morphogenesis” (ANGPT2, as well as other common transcripts) in in Vivo group as compared to decreased expression of these genes in in Vitro group of oocytes.

It has been suggested that investigated genes undergo significant expression before in vitro maturation, when enhanced storage of large amount of RNA takes place. Creating templates for synthesis of proteins is required for formation of fully mature gametes and early embryo growth. Therefore we hypothesized that the processes of vascularization and/or angiogenesis reach a high activity in immature oocytes and are distinct from achievement of maturational stage by oocytes in pigs.

Open access
Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach

Abstract

The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the group of compound processes responsible for proper oocyte transport and successful fertilization. The cellular interactions between cumulus-oocyte complexes (COCs) and oviductal epithelial cells (OECs) are crucial for this unique mechanism. In the present study we have analyzed angiogenesis and blood vessel development processes at transcript levels. By employing microarrays, four ontological groups associated with these mechanisms have been described. Differentially expressed genes belonging to the “angiogenesis”, “blood circulation”, “blood vessel development” and “blood vessel morphogenesis” GO BP terms were investigated as a potential markers for the creation of new blood vessels in cells under in vitro primary culture conditions.

Open access
“Cell cycle process”, “cell division” and “cell proliferation” belong to ontology groups highly regulated during long–term culture of porcine oviductal epithelial cells

Abstract

Morphological and biochemical changes in the cells surrounding the oocyte seem to be extremely important in an effective fertilization process. Thanks to advanced cell culture techniques, as well as biochemical and bioinformatics analyses, we can partly imitate the phenomena occurring in the living organism. Previous studies showed a possibility of short – and long – term OEC in vitro cultivation, during which these cells have shown to have significant proliferation and expression of genes responsible for differentiation. Our research was aimed at maintaining a culture of porcine oviduct epithelial cells and analyzing their gene expression profile. The study employed cross-bred gilts at the age of about 9 months, obtained from commercial herds. With the use of Affymetrix® Porcine Gene 1.1 ST Array Strip, we have examined the expression of 12257 transcripts. Genes with fold change higher than abs (2) and with corrected p-value lower than 0.05 were considered as differentially expressed. We chose 20 genes with the most marked expression (10 up – regulated, 10 down – regulated) for further investigation in the context of literature sources. These genes belonged to three ontological groups: “cell cycle process”, “cell division” and “cell proliferation”. The results obtained from these studies may be the basis for further molecular analyses.

Open access
Fatty Acids Related Genes Expression Undergo Substantial Changes in Porcine Oviductal Epithelial Cells During Long-Term Primary Culture

Abstract

The process of reproduction requires several factors, leading to successful fertilization of an oocyte by a single spermatozoon. One of them is the complete maturity of an oocyte, which is acquired during long stages of folliculogenesis and oogenesis. Additionally, the oviduct, composed of oviductal epithelial cells (OECs), has a prominent influence on this event through sperm modification and supporting oocyte’s movement towards uterus. OECs were isolated from porcine oviducts. Cells were kept in primary in vitro culture for 30 days. After 24h and on days 7, 15 and 30 cells were harvested, and RNA was isolated. Transcript changes were analyzed using microarrays. Fatty acids biosynthetic process and fatty acids transport ontology groups were selected for analysis and described. Results of this study indicated that majority of genes in both ontology groups were up-regulated on day 7, 15 and 30 of primary in vitro culture. We analyzed genes involved in fatty acids biosynthetic process, including: GGT1, PTGES, INSIG1, SCD, ACSL3, FADS2, FADS1, ACSS2, ALOX5AP, ACADL, SYK, ACACA, HSD17B8, FADS3, OXSM, and transport, including: ABCC2, ACSL4, FABP3, PLA2G3, PPARA, SYK, PPARD, ACACA and P2RX7. Elevated levels of fatty acids in bovine and human oviducts are known to reduce proliferation capacity of OECs and promote inflammatory responses in their microenvironment. Most of measured genes could not be connected to reproductive events. However, the alterations in cellular proliferation, differentiation and genes expression during in vitro long-term culture were significant. Thus, we can treat them as putative markers of changes in OECs physiology.

Open access
Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes

Abstract

The efficiency of the process of obtaining mature oocytes, and then of porcine embryos in vitro depends on many factors and requires meeting many conditions. These include selection of morphologically appropriate oocytes, selection of appropriate medium components, as well as a number of abiotic factors (appropriate microenvironment during in vitro culture).

Oocytes were taken from 45 pubertal crossbred Landrace gilts. The BCB test was carried out. BCB + oocytes were divided into two groups: “before IVM” and “after IVM”. “Before IVM” oocytes were subjected to molecular analyzes immediately after collection, while “after IVM” oocytes underwent in vitro maturation and then the second BCB test. Oocytes that remained BCB+ after the second test were used for molecular analyzes using Affymetrix expression microarrays.

A group of genes responsible for response to organic substance and response to abiotic stimulus, which underwent significant changes (decrease) was discovered after oocyte in vitro maturation. Genes such as MM, PLDP, SERPINH, MYOF, DHX9, HSPA5, VCP, KIT, SERPINH1, PLD1, and VCP showed the largest decrease after the culture period. The levels of these genes were therefore elevated in oocytes before the in vitro maturation process.

In conclusion, a number of organic and abiotic factors have an impact on the process of the oocyte in vitro maturation. The presented results confirm the literature data in which the low efficiency of obtaining mature oocytes in in vitro conditions is mentioned, which further impacts the amount of viable embryos obtained.

Open access