Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Marija Gligora Udovič x
Clear All Modify Search
Open access

Koraljka Kralj Borojević, Marija Gligora Udovič, Petar Žutinić, Gábor Várbíró and Anđelka Plenković-Moraj

Abstract

Benthic diatoms are widely used in Europe and worldwide to access ecological status of running waters. One of key goals of Water Framework Directive is to classify rivers and streams using biological quality elements and type specific reference conditions. According to system B which incorporates additional abiotic descriptors, there are 24 water types in Croatia. For biological analyses 92 rivers and streams with 140 sampling points were chosen and sampled for benthic diatoms and water chemistry simultaneously. Self organizing map (SOM) analysis was used to define biotypes from species composition and abundance of benthic diatoms. Grouping of samples in SOM resulted in 10 distinctive groups. Based on their geographical position and site characteristics, groups represent sites with similar properties (as waterbed, catchment size, altitude, size of stream) belonging to different ecoregions in Croatia. Analysis of variance revealed statistically significant differences (p<0.05) among SOM groups concerning ammonia, nitrates and total phosphorus. Indicator species analysis (IndVal) singled out species that were significantly characteristic (p<0.05) for SOM and abiotic types. Compared to abiotic groups, in which 7 out of 24 have no indicator species, all SOM groups have one or several characteristic diatom species, thus indicating diatom assemblages as valuable site descriptors. Canonical analysis of principal coordinates analysis also indicated that SOM grouping of samples is statistically reliable. Grouping of similar sites, although placed into different abiotic types, makes SOM groups with its corresponding representative species an easy tool for water quality assessment and description of reference assemblage.

Open access

Sunčica Bosak, Marija Gligora Udovič and Diana Sarno

Abstract

Chaetoceros wighamii Brightwell is a planktonic diatom species originally described from brackish waters. Since its original description, the species has been reported in a wide variety of habitats, ranging from freshwater to marine. Varying descriptions exist in the taxonomic literature and several taxa have been considered as synonyms, including freshwater species Chaetoceros amanita. In this study we provide morphological and ultrastructural information on a cultured strain isolated from freshwater sample collected in the Lake Vrana (Vransko jezero) in Croatia, in April 2011. The cells form short and robust chains with very narrow apertures, often partially occluded by silica membranes. Other distinctive features observable in light microscopy are the shape and orientation of the setae which are very long, straight and robust, diverging in various directions from the chain axis and the single parietal chloroplast extending from valve to valve. Distinct ultrastructural characteristics are the absence of processes either in intercalary or terminal valves and the ornamentation of the valve face with densely distributed ribs spreading from an irregular eccentric hyaline area without a clearly defined annulus. The outer surface of the terminal valve is ornamented with small spines and setae are composed of fl at longitudinal filaments interconnected with short bars and ornamented with small spines tightly arranged around the setae. Our description agrees well with that reported for the freshwater morphotypes of C. wighamii (syn. C. amanita) and contributes for a reliable distinction of this intriguing taxon from similar morphotypes. This finding supports the interpretation of Chaetoceros wighamii as a freshwater/brackish species and represents the first report of a Chaetoceros species in lacustrine environment in Croatia and possibly in any Central European habitats.

Open access

Jasmina Kamberović, Anđelka Plenković-Moraj, Koraljka Kralj Borojević, Marija Gligora Udovič, Petar Žutinić, Dubravka Hafner and Marco Cantonati

Abstract

The biodiversity of algal communities and environmental conditions were investigated in the springs of Mt. Konjuh. The assemblages of 20 springs emerging from different lithologies (limestones and ophiolites, respectively) comprised 234 algal taxa. Diatoms and cyanobacteria were the most species-rich groups. The most common alkaliphilic, circumneutral, and eutraphentic diatoms were represented by the genera Gomphonema, Nitzschia, Navicula, Cymbella, and Achnanthidium, and by the cyanobacterial genus Phormidium. Hierarchical clustering and SIMPROF analysis based on relative algal abundance clustered springs into six groups, separating them mainly according to spring type and lithology. Indicator species for groups and springs on different lithological substrata were singled out, revealing 33 taxa with preferences for ophiolites, and 20 taxa with preferences for carbonates. The values of the Shannon-Wiener diversity index were moderately high per spring location, and similar for the two groups of springs on different lithologies. A higher similarity in species composition was noted between springs on ophiolites and limestones than between springs on ophiolites and other types of siliceous substrata. The present study suggests that algal assemblages in springs emerging from ophiolites, even those made up by a preponderance of silicates, should be analyzed separately from those related to springs on other siliceous substrata. The results obtained showed that most of the springs studied are affected by anthropogenic impacts and morphological alterations leading to the dominance of highly competitive meso- and eutraphentic algal species, thus emphasizing the importance of further investigation and conservation of these habitats.