Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Marcin Słoma x
Clear All Modify Search
Open access

Marcin Słoma, Małgorzata Jakubowska and Jakub Szałatkiewicz

Abstract

Superior electrical properties of carbon nanotubes were utilized by the authors in the fabrication of printed resistors. In common applications such as electrodes or sensors, only basic electrical and mechanical properties are investigated, leaving aside other key parameters related to the stability and reliability of particular elements. In this paper we present experimental results on the properties of printed resistive layers. One of the most important issues is their stability under high currents creating excessive thermal stresses. In order to investigate such behavior, a high direct current stress test was performed along with the observation of temperature distribution that allowed us to gain a fundamental insight into the electrical behavior at such operating conditions. These experiments allowed us to observe parametric failure or catastrophic damage that occurred under excessive supply parameters. Electrical parameters of all investigated samples remained stable after applying currents inducing an increase in temperature up to 130 °C and 200 °C. For selected samples, catastrophic failure was observed at the current values inducing temperature above 220 °C and 300 °C but in all cases the failure was related to the damage of PET or alumina substrate. Additional experiments were carried out with short high voltage pulse stresses. Printed resistors filled with nanomaterials sustained similar voltage levels (up to 750 V) without changing their parameters, while commonly used graphite filled polymer resistors changed their resistance value.

Open access

Krzysztof Mleczko, Piotr Ptak, Zbigniew Zawiślak, Marcin Słoma, Małgorzata Jakubowska and Andrzej Kolek

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.

Open access

Łucja Dybowska-Sarapuk, Sławomir Rumiński, Grzegorz Wróblewski, Marcin Słoma, Anna Młożniak, Ilona Kalaszczyńska, Małgorzata Lewandowska-Szumieł and Małgorzata Jakubowska

Abstract

The aim of the study was to produce heterophasic graphene nanoplatelets based formulation designed for ink-jet printing and biomedical applications. The compositions should meet two conditions: should be cytocompatible and have the rheological properties that allow to apply it with ink-jet printing technique. In view of the above conditions, the selection of suspensions components, such as binder, solvent and surfactants was performed. In the first stage of the research the homogeneity of the dispersion of nanoplatelets and their sedimentation behaviour in diverse solutions were tested. Subsequently, the cytotoxicity of each ink on human mesenchymal stem cells was examined using the Alamar Blue Test. At the same time the rheology of the resulting suspensions was tested. As a result of these tests the best ink composition was elaborated: water, polyethylene glycol, graphene nanoplatelets and the surfactant from DuPont company.