Search Results

1 - 4 of 4 items

  • Author: Marcin Rajner x
Clear All Modify Search

Ocean Tidal Loading from the Gravity Measurements at Jozefoslaw Observatory

Ocean tidal loading is important source of disturbances in precise gravity measurements. Nowadays gravimeters reached unprecedented relative accuracy and loading signal can be observed also at large distances from the oceans.

In this paper theoretical calculations are compared with analysis made on the basis of observations collected in Jóozefoslaw Observatory during last three years with use of LCR-ET spring gravimeter. Long series of consisted data allowed for investigation in small subtle gravity signals. Subtracting body tides from tidal analysis results yields discrepancies of a few nm /s 2 for main tidal constituents which are in good agreement with computed ocean loading using most recent ocean models.

Abstract

Presented paper is dedicated to problems of deformation of the Earth's crust as a response to the surface loading caused by continental waters. The aim of this study was to specify areas particularly vulnerable to studied deformation and to compare calculated and observed displacements. Information of the continental water volume was taken from the WaterGAP Global Hydrological Model. Calculated values of the deformations were verified with the results obtained with programs SPOTL and grat. Vertical deformations were almost 10 times higher than the deformation in the horizontal plane, for which reason later part of the paper focuses on the former. In order to check agreement of the calculated and observed deformation 23 stations of International GNSS Service (IGS) were selected and divided into three groups (inland, near the shoreline and islands). Before comparison outliers and discontinuities were removed from GNSS observations. Modelled and observed signals were centred. The analysed time series of the vertical displacements showed that only for the inland stations it is possible to effectively remove displacements caused by mass transfer in the hydrosphere. For stations located in the coastal regions or islands, it is necessary to consider additional movement effects resulting from indirect ocean tidal loading or atmosphere loading.

Abstract

This year the Faculty of Geodesy and Cartography, Warsaw University of Technology celebrates its 95th jubilee, which provides an opportunity to present the Faculty’s rich traditions in polar research. Employees and students of the faculty for almost 60 years have taken part in research expeditions to the polar circle. The article presents various studies typical of geodesy and cartography, as well as miscellany of possible measurement applications and geodetic techniques used to support interdisciplinary research. Wide range of geodetic techniques used in polar studies includes classic angular and linear surveys, photogrammetric techniques, gravimetric measurements, GNSS satellite techniques and satellite imaging. Those measurements were applied in glaciological, geological, geodynamic, botanical researches as well as in cartographic studies. Often they were used in activities aiming to ensure continuous functioning of Polish research stations on both hemispheres. This study is a short overview of thematic scope and selected research results conducted by our employees and students.

Abstract

The article presents current issues and research work conducted in the Department of Geodesy and Geodetic Astronomy at the Faculty of Geodesy and Cartography at Warsaw University of Technology. It contains the most important directions of research in the fields of physical geodesy, satellite measurement techniques, GNSS meteorology, geodynamic studies, electronic measurement techniques and terrain information systems.