Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Malik S. Dzhabrailov x
Clear All Modify Search
Open access

Malik S. Dzhabrailov and Sevinc Z. Khaligova

Abstract

We prove that the anisotropic fractional maximal operator Mα,σ and the anisotropic Riesz potential operator Iα,σ, 0 < α < ∣σ∣ are bounded from the anisotropic modified Morrey space L̃1,b,σ(Rn) to the weak anisotropic modified Morrey space WL̃q,b,σ(Rn) if and only if, α/|σ|≤1-1/q≤α/(|σ|(1-b)) and from L̃p,b,σ(Rn) to L̃q,b,σ(Rn) if and only if, α/|σ| ≤ 1/p-1/q≤α ((1-b) |σ|). In the limiting case we prove that the operator Mα,σ is bounded from L̃p,b,σ(Rn) to L (Rn) and the modified anisotropic Riesz potential operator Ĩα,σ is bounded from L̃p,b,σ(Rn) to BMOσ(Rn).