Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Magdalena Moczała x
Clear All Modify Search
Open access

Magdalena Moczała, Miriam Karpińska, Monika Poznar, Piotr Dobryszycki and Andrzej Sikora

Abstract

This paper presents utilization of argon plasma for gradual etching of calcium carbonate crystals. The plasma treatment has been chosen as it appears to be the technique that enables removal of following material layers, thus, the access to the inside of crystals is possible. Examples of investigations of the morphology and mechanical properties of surfaces of calcium carbonate crystals are presented. The impact of plasma treatment has been verified in terms of roughness and volume changes investigated using atomic force microscopy technique in a multi-step experiment. Therefore, we were able to observe the crystal degradation process, revealing the spatial inhomogeneity of the calcium carbonate crystals resulting from their core-shell structure.

Open access

Andrzej Sikora, Magdalena Moczała and Bartosz Boharewicz

Abstract

In this paper, we present a novel approach developed in order to increase the reliability and accuracy of AFM investigation of morphological changes in a nanocomposite due to exposure to the media causing its degradation. By precise sample positioning and repetitive determination of the roughness changes at specific spots, we were able to create space-related degradation profiles. As the multi-step experiment based on exposure/scanning cycle was performed, we were able to observe a unique response of investigated samples revealing spatial inhomogeneity of the material. In order to present the measurement methodology, we used polystyrene samples containing various quantities of PC61BM nanofiller (0 %, 5 %, 10 % and 20 % of mass proportion), which was exposed to 370 nm UV radiation. Obtained data can be recognized as specific fingerprints of investigated materials. The solution based on creation and analysis of degradation profiles can be particularly useful for diagnostics of nanomaterials and nanocomposites to test their resistance to various conditions.

Open access

Konrad Chabowski, Adam F. Junka, Tomasz Piasecki, Damian Nowak, Karol Nitsch, Danuta Smutnicka, Marzenna Bartoszewicz, Magdalena Moczała and Patrycja Szymczyk

Abstract

The suitability of low-cost impedance sensors for microbiological purposes and biofilm growth monitoring was evaluated. The sensors with interdigitated electrodes were fabricated in PCB and LTCC technologies. The electrodes were golden (LTCC) or gold-plated (PCB) to provide surface stability. The sensors were used for monitoring growth and degradation of the reference ATCC 15442 Pseudomonas aeruginosa strain biofilm in invitro setting. During the experiment, the impedance spectra of the sensors were measured and analysed using electrical equivalent circuit (EEC) modelling. Additionally, the process of adhesion and growth of bacteria on a sensor’s surface was assessed by means of the optical and SEM microscopy. EEC and SEM microscopic analysis revealed that the gold layer on copper electrodes was not tight, making the PCB sensors susceptible to corrosion while the LTCC sensors had good surface stability. It turned out that the LTCC sensors are suitable for monitoring pseudomonal biofilm and the PCB sensors are good detectors of ongoing stages of biofilm formation.