Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Magdalena Misz-Kennan x
Clear All Modify Search
Open access

Magdalena Misz-Kennan

Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland

Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes.

Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals.

Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are n-alkanes, acyclic isoprenoids, hopanes, polycyclic aromatic hydrocarbons (PAHs) and their derivatives, phenol and its derivatives. These compounds occur in all wastes except those most highly altered where they were probably destroyed by high temperatures. These compounds were generated mainly from liptinite-group macerals. Driven by evaporation and leaching, they migrated within and out of the dump. Their presence in some wastes in which microscopically visible organic matter is lacking suggests that they originated elsewhere and subsequently migrated through the dump piles. During their migration, the compounds fractionated, were adsorbed on minerals and/or interacted.

The absence of alkenes, and of other unsaturated organic compounds, may reflect primary diagenetic processes that occurred in coals and coal shales during burial and/or organic matter type. Their absence may also be a consequence of heating that lasted many years, hydropyrolysis, and/or the participation of minerals in the reactions occurring within the dumps. The wastes contain compounds typical of organic matter of unaltered kerogen III type and the products of pyrolytic processes, and mixtures of both. In some wastes, organic compounds are completely absent having been destroyed by severe heating.

The distributions of n-alkanes in many samples are typical of pyrolysates. In some wastes, narrow n-alkane distributions reflect their generation over small temperature ranges. In others, wider distributions point to greater temperature ranges. Other wastes contain n-alkane distributions typical of unaltered coal and high pristane content or mixtures of pyrolysates and unaltered waste material. The wastes also contain significant amounts of final αβ hopanes. Polycyclic aromatic hydrocarbons are represented only by two- to five-ring compounds as is typical of the thermal alteration of hard coal.

Correlations between the degree of organic matter alteration and the relative contents of individual PAHs and hopanes and geochemical indicators of thermal alteration are generally poor. The properties of the organic matter (its composition and rank), temperature fluctuations within the dumps, migration of organic compounds and mineral involvement are probably responsible for this.

The processes taking place in coal waste dumps undergoing self-heating and self-combustion are complicated; they are very difficult to estimate and define. The methods of organic petrology and geochemistry give complementary data allowing the processes to be described. However, each of the dumps investigated represents a separate challenge to be surmounted in any regional attempt to delineate the regional environmental impact of these waste dumps.

Open access

Ádám Nádudvari, Monika J. Fabiańska and Magdalena Misz-Kennan

Abstract

Several types of coal waste (freshly-dumped waste, self-heated waste and waste eroded by rain water), river sediments and river water were sampled. The aim was to identify the types of phenols present on the dumps together with their relative abundances. Gas chromatography-mass spectrometry (GC-MS) analyses of a large number of samples (234) statistically underpin the phenol distributions in the sample sets. The largest average relative contents (1.17-13.3%) of phenols occur in the self-heated samples. In these, relatively high amounts of phenol, C1- and C2-phenols reflect the thermal destruction of vitrinite. In fresh coal waste, C2- and C3-phenols that originated from the bacterial/fungal degradation and oxidation of vitrinite particles are the most common (0.6 rel.%). Water-washed coal waste and water samples contain lower quantities of phenols. In the river sediments, the phenols present are the result of bacterial- or fungal decay of coaly organic matter or are of industrial origin.

Open access

Justyna Ciesielczuk, Andrzej Czylok, Monika J. Fabiańska and Magdalena Misz-Kennan

Abstract

Coal-waste dumps superimposed on former rubbish dump frequently undergo selfheating and selfignition of organic matter dispersed in the waste. The special conditions for plant growth generated as a result have been investigated since 2008 on the municipal dump reclaimed with coal wastes in Katowice-Wełnowiec, Poland. The plants observed most frequently where heating has occurred are Sisymbrium loeselii, Artemisia vulgaris, Sonchus arvensis, Chenopodium album, Achillea millefolium, Cirsium arvense, Amaranthus retroflexus, Atriplex nitens and Solanum nigrum. Some new, rare species such as Portulaca oleracea, first noticed in 2011, may be added. Most of encroaching species are annual, alien archeophytes and neophytes. Native species are mainly perennials. The majority of these species show a tendency to form specimens of huge size (gigantism). The abundance of emitted CO2 and nitrogen compounds is the likely cause of this. Additionally, the plants growing there are not attacked by insects. The heating of the ground liquidates the natural seed bank. After cooling, these places are seeded by species providing seeds at that very moment (pioneer species). Heated places on the dumps allow plant growth even in the middle of winter. As the seasonal vegetation cycle is disturbed, plants may be found seeding, blooming and fruiting at the same time.