Search Results

1 - 3 of 3 items

  • Author: Maciej Kryza x
Clear All Modify Search

Abstract

Sulphur and nitrogen deposition were calculated with the FRAME model and used to assess the exceedances of the critical loads for acidification and eutrophication of natural ecosystems in Poland. For the first time two tools: the FRAME and SONOX models were used jointly to provide information on ecosystems at risk. The FRAME model obtained close agreement with available sulphur and nitrogen wet deposition measurements. The total mass of sulphur deposited in Poland in year 2008 was estimated as 292 Gg S. Total deposition of nitrogen (oxidized + reduced) is 389 Gg N. 11% of the ecosystems in Poland were calculated to be at risk of acidification due to deposition of sulphur and nitrogen. In the case of eutrophication, over 95% of terrestrial ecosystems are at risk due to the large deposition of nitrogen compounds.

Abstract

The Fine Resolution Atmospheric Multi-pollutant Exchange model was used to calculate the mean annual concentration of PM2.5 at a resolution of 5 km × 5 km for the United Kingdom (UK) and Poland for the year 2007. The modelled average PM2.5 concentration is higher for Poland than the UK and amounts to 9.2 µg · m−3 and 5.6 µg · m−3, respectively. The highest concentrations concern London and coastal areas (due to the sea salt contribution) for the UK and urban agglomerations in the case of Poland. Maximum values occurring close to the UK coastline can reach 18 µg · m−3. The average contribution of natural particles amounts to 34 and 20% of total PM2.5 concentration, respectively for the UK and Poland. Among anthropogenic particles for both countries the highest contribution falls on secondary inorganic aerosols and the lowest contribution is for secondary organic aerosols.

Abstract

Atmospheric transport model FRAME has been used in this study to estimate the influence of precipitation on the patterns of wet deposition of oxidised sulphur, oxidised nitrogen and reduced nitrogen in Poland during the years 1981-2005. A constant wind and emission data and year-specific spatially interpolated precipitation data was used in the model. The results show that the correlation coefficient between mean annual precipitation totals and mean wet deposition is above 0.9 for all examined compounds. The spatial patterns of pollutant deposition are similar for all years, with the north-western part of Poland receiving the lowest and the southern, mountainous part, the highest pollutant load. The largest precipitation-induced changes in wet deposition budgets are observed for oxidised sulphur (53% of the average amount between wet and dry year), and smaller for oxidised and reduced nitrogen (30%). Inter-annual precipitation changes cause large variations in the amount of wet deposition of pollutants. This means that the emission abatements may not cause immediate environmental effects, eg reductions in deposition of pollutants and, further ecosystems areas of exceeded critical loads.