Search Results

1 - 3 of 3 items

  • Author: Maciej Kozłowski x
Clear All Modify Search

Motion planning and feedback control for a unicycle in a way point following task: The VFO approach

This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop motion realization stage are considered. The way point following task is determined by the user-defined sequence of way-points which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any interpolation of way-points leading to simplified task description and its subsequent realization. The motion planning as well as the motion realization stage are based on the Vector-Field-Orientation (VFO) approach applied here to a new task. The unique features of the resultant VFO control system, namely, predictable vehicle transients, fast error convergence, vehicle directing effect together with very simple controller parametric synthesis, may prove to be useful in practically motivated motion tasks.


In arid zones, the availability of fresh water is usually very limited because of high salinity, which greatly limits their use for irrigation purposes. High mineralization of water used for irrigation leads to increased soil salinity. The aim of the study was to examine the potential use of alluvial groundwater for irrigation in arid zones. The works were conducted in the Middle Draa Valley in southern Morocco (the Mhamid Oasis) in October 2015. Water samples of alluvial groundwater were collected for laboratory analysis from 42 wells located in the oasis. In order to determine the possibility to use the water for irrigation purposes, the Sodium Adsorption Ratio (SAR), sodium percentage (%Na), permeability index (PI), Kelly’s ratio (KR), magnesium hazards (MH) and electrical conductivity (EC) were assessed. EC values, exceeding 3000 μS·cm-1 in all the samples, classify the water as unsuitable for irrigation. MH and the KR indexes show that 30% of water samples represent levels making them unsuitable for irrigation. SAR confirms the very high degree of susceptibility of the analyzed waters to salinity hazard. The PI index of these waters is moderate, however in terms of sodium content they can be deemed suitable for irrigation purposes. It has been found that even within a small area of the oasis, a very large differentiation in the alluvial groundwater suitability for irrigation purposes occurs.


In arid areas, with rivers functioning episodically, alluvial resources are the main source of water. Considering the intensified regulation of discharge in montane catchments, supplying the intermittent rivers, in the nearest future alluvial aquifers will gain key importance for the functioning of people in arid zones. The research aimed to investigate the diversified chemistry of alluvial waters typical of large intermittent river valleys in hot arid zones as well as to analyse processes determining the water chemistry and affecting its diversity. The detailed study, carried out in October 2015, covered the Draa river valley (1100 km total length) in the region of the Mhamid Oasis. The examined water was sampled from all wells found in the study area. Concentrations of the main cations: Ca2+, Mg2+, K+, Na+, NH4 +, and Li+, anions: Cl, SO4 2−, HCO3 , and NO3 , as well as trace elements: Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn, were identified. Results were analysed with statistical, hydrochemical, and geochemical modelling methods. Alluvial waters of the eastern and western part of the oasis differed in concentrations of numerous components, what resulted from the regulation of irrigation. Specific electrical conductivity showed a 3.5-fold increase, from 3800 to 13800 μS/cm, consistent with the direction of water flow in the oasis, from east to west. Even a greater rise was observed for ions: Cl (6x), Na+ (5.5x), Mg2+ (5.0x), Ca2+, and SO4 2− (3.5x). Such a composition indicated multiionic hydrochemical type of waters dominated by Na+ and Cl. Additionally, high Pearson correlation coefficients were recorded for Na+ and Cl (0.98) as well as Mg2+ and Cl (0.97). The saturation index suggested that the main water components originated from dissolving of minerals such as halite, anhydrite, sylvite, and gypsum. Groundwater chemistry in the Mhamid Oasis was determined mainly by geogenic processes, such as dissolving of evaporates, precipitation of carbonate minerals, and ion exchange.