Search Results

1 - 3 of 3 items

  • Author: Maciej Frant x
Clear All Modify Search

Abstract

Infectious diseases of swine, particularly zoonoses, have had a significant influence on nutritional safety and availability of pig meat as high-energy protein product since the time that pigs were domesticated back in the 7th century BC. The main sources of swine infectious diseases include the so-called primary sources (direct infection, i.e. through contact with infected and sick animals) and secondary sources (contaminated meat products, slaughter products, and vectors, including ticks). At present, the most serious epidemiological and economic threat to swine breeding in Europe is African swine fever (ASF). This disease, originally coming from Africa, is incurable and causes death of infected pigs and wild boars during 7−10 days after infection. Among the various factors that influence the spread of ASF, important role is played by ticks from the genus Ornithodoros, mainly from the species Ornithodoros moubata. Research on the ASF indicates that other species of ticks can also transmit the virus to healthy pigs in laboratory conditions. Sylvatic and domestic cycles of ASF virus transmission, which have been described so far, require further studies and updating in order to point the potential new vectors in the Caucasus and Eastern Europe affected by the ASF. Effective methods of control and biosecurity may significantly slow down the spread of ASF, which undoubtedly is a major threat to world pig production and international swine trade.

Abstract

Avian reticuloendotheliosis (RE) represents an important immunosuppressive disease of poultry. The occurrence of RE in both chickens and turkeys has an immunosuppressive effect and may lead to vaccination failures. Avian reticuloendotheliosis virus (REV) is widely distributed in different kinds of birds, causing subclinical infections. Another important issue adhering to this disease is contamination of vaccines against fowl pox (FP) and Marek’s disease (MD) with REV. The capability of REV to integrate into the genome of other larger DNA viruses complicates its diagnosis and prevention. There are no efficient vaccines against RE nor treatment, which also complicates how to limit its impact on poultry farming. This paper reviews the current state of knowledge of this important immunosuppressive agent of poultry emphasising the importance of this problem in terms of diagnosis of RE.

Abstract

Introduction

African swine fever (ASF) is a pressing economic problem in a number of Eastern European countries. It has also depleted the Chinese sow population by 50%. Managing the disease relies on culling infected pigs or hunting wild boars as sanitary zone creation. The constraints on the development of an efficient vaccine are mainly the virus’ mechanisms of host immune response evasion. The study aimed to adapt a field ASFV strain to established cell lines and to construct recombinant African swine fever virus (ASFV) strain.

Material and Methods

The host immune response modulation genes A238L, EP402R, and 9GL were deleted using the clustered regularly interspaced short palindromic repeats/caspase 9 (CRISPR/Cas9) mutagenesis system. A representative virus isolate (Pol18/28298/Out111) from Poland was isolated in porcine primary pulmonary alveolar macrophage (PPAM) cells. Adaptation of the virus to a few established cell lines was attempted. The plasmids encoding CRISPR/Cas9 genes along with gRNA complementary to the target sequences were designed, synthesised, and transfected into ASFV-infected PPAM cells.

Results

The reconstituted virus showed similar kinetics of replication in comparison to the parent virus isolate.

Conclusion

Taking into account the usefulness of the developed CRISPR/Cas9 system it has been shown that modification of the A238L, EP402R, and 9GL genes might occur with low frequency, resulting in difficulties in separation of various virus populations.