Search Results

1 - 6 of 6 items

  • Author: Małgorzata Pisarska-Jamroży x
Clear All Modify Search
Adjustment coefficients for planimetric analysis of the granulometry of coarse-grained sediments

Adjustment coefficients for planimetric analysis of the granulometry of coarse-grained sediments

The relationship between results from granulometric analyses of by sieving and by planimetry was investigated by numerical simulation of cubes filled with boulders, cobbles and pebbles. Cross-sections through the sediment were simulated and compared with photos of an actual outcrop wall. Volumes estimated on the basis of planimetric analysis using the cross-sections were compared with sieve analyses, thus allowing to determine adjustment coefficients. The coefficients for pebbles and cobbles have a small standard error, but are larger for boulders, which might be a consequence of too small areas formed by the cross-sections.

Open access
Is the Charlottenthal fan (marginal zone of the Pomeranian phase, NE Germany) an end moraine?

Is the Charlottenthal fan (marginal zone of the Pomeranian phase, NE Germany) an end moraine?

The maximum ice-sheet extent of a glaciation or glacial phase is in most cases indicated by the position of end moraines. In some cases, however, the maximum extent of the ice sheet is indicated by a fan which represents the transitional zone between the end moraine and the proximal outwash plain (sandur). Such a fan from the Pomeranian phase near Charlottenthal in NE Germany has been investigated for its lithofacies, and the depositional mechanisms of the two sedimentary environments (end moraine and outwash plain) are reconstructed. The Charlottenthal profle is not characteristic in a sedimentological sense of a typical marginal end moraine or a sandur. The deposits represent subaerial debris flows, sheet floods and channelized currents, which are typically processes for transitional fan.

Gravel samples from the till complex show typical Weichselian till compositions. These till compositions indicate a general transport direction from North to South, which is consistent with the known movement of the ice sheet during the Pomeranian phase of the Weichselian.

Open access
Factors controlling sedimentation in the Toruń-Eberswalde ice-marginal valley during the Pomeranian phase of the Weichselian glaciation: an overview

Abstract

During the Pleistocene the Scandinavian ice sheet drained huge quantities of sediment-laden meltwaters. These meltwaters supplied ice-marginal valleys that formed parallel to the front of the ice sheet. Not without significance was the supply of ice-marginal valleys from extraglacial rivers in the south. Moreover, periglacial conditions during and after sedimentation in ice-marginal valleys, the morphology of valley bedrocks, and erosion of older sediments played important roles in the depositional scenarios, and in the mineralogical composition of the sediments. The mechanisms that controlled the supply and deposition in ice-marginal valleys were analysed on the basis of a Pleistocene ice-marginal valley that was supplied by northern and southern source areas in the immediate vicinity. Investigations were conducted in one of the largest ice-marginal valleys of the Polish-German lowlands, i.e., the Toruń-Eberswalde ice-marginal valley, in sandurs (Drawa and Gwda) supplied sediments and waters from the north into this valley, and on extraglacial river terraces (pre-Noteć and pre-Warta rivers), formed simultaneously with the sandurs and ice-marginal valley (Pomeranian phase of Weichselian glaciation) supplied sediments and waters from the south into this valley. A much debated question is how similar, or different, depositional processes and sediments were that contributed to the formation of the Toruń-Eberswalde ice-marginal valley, and whether or not it is possible to differentiate mostly rapidly aggraded sandur sediments from ice-marginal valley sediments. Another question addresses the contribution of extraglacial feeding of the Toruń-Eberswalde ice-marginal valley. These matters were addressed by a wide range of analyses: sediment texture and structure, architectural elements of sediments, frequency of sedimentary successions, heavy-mineral analysis (both transparent and opaque heavy minerals), analysis of rounding and frosting of quartz grains, and palaeohydrological calculations. Additionally, a statistical analysis was used. The specific depositional conditions of distribution of sediments in ice-marginal valley allow to distinguish new environment of ice-marginal valley braided river. The spectrum of depositional conditions in the Toruń-Eberswalde ice-marginal valley and their specific palaeohydraulic parameters allow to distinguish three coexisting zones in the ice-marginal valley braided-river system: (1) deep gravel-bed braided channel zone with extensive scours, (2) deep sand-bed braided channel zone with transverse bars, and (3) marginal sand-bed and gravel-bed braided channel zone with diamicton and breccia deposition, which were characterised in detail. Some of the results have been published previously, which is why they are discussed in the present paper within the context of new data

Open access
Sedimentation style of a Pleistocene kame terrace from the Western Sudety Mountains, S Poland

Sedimentation style of a Pleistocene kame terrace from the Western Sudety Mountains, S Poland

The depositional conditions of kame terraces in a mountain valley were analysed sedimentologically and petrologically through a series of kame terraces in the Rudawy Janowickie mountains. The kame terraces comprise five lithofacies associations. Lithofacies association GRt, Sp originates from deposition in the high-energy, deep gravel-bed channel of a braided river. Lithofacies association GC represents a washed out glacial till. Probably a thin layer of till was washed out by sandy braided rivers (Sp). The fourth association (Fh, Fm) indicates a shallow and quite small glaciomarginal lake. The last association (GRt, GRp) indicates the return of deposition in a sandy-bed braided channel. The petrography of the Janowice Wiekie pit and measurements of cross-stratified beds indicate a palaeocurrent direction from N to S. The Janowice Wielkie sedimentary succession accumulated most probably during the Saalian (Odranian, Saale I, Drenthe) as the first phase of ice-sheet melting, because the kame terrace under study is the highest one, 25-27 m above the Bóbr river level. The deposits under study are dominated by local components. The proglacial streams flowed along the margin of the ice sheet and deposited the kame terrace. The majority of the sedimentary succession was deposited in a confined braided-river system in quite deep channels.

Open access
Miocene quartz sands redeposited on subaqueous and alluvial fans during the Saalian: Interpretation of the depositional scenario at Ujście, western Poland

Abstract

The 14-m-thick sandy succession at Ujście in western Poland formed during the Odranian stadial of the Saalian glaciation, is exceptional in being very well sorted, almost mono-fractional (fine-grained sands) and mono-mineral (mainly quartz grains) and in lacking Scandinavian erratics. The lower sequence (5 metres in thickness) consists of three stacked packages of clinoforms (inclined cross-stratified sands) and is interpreted as having been deposited on a subaqueous fan in a shallow lake during two phases of rising water levels. The upper sand (9 metres in thickness) with (sub) horizontal stratification was redeposited on a subaerial alluvial fan. Distinctive distributary channels that occur in the uppermost part of the subaqueous fan and in the lowermost portion of the alluvial fan may indicate a change in sedimentation style from subaqueous to subaerial. Moreover, the subaerial position of the fan supports the presence of ice-wedge casts that developed under periglacial conditions in the upper part of alluvial fan. The results of granulo-metric analysis, rounding and frosting of grains and mineral analysis indicate that the sands are derived from Gorzów Formation of Early Miocene age. The only feasible explanation is that the 14-m-thick unit must have been redeposited during the Saalian glaciation.

Open access
Reconstruction of sediment provenance and transport processes from the surface textures of quartz grains from Late Pleistocene sandurs and an ice-marginal valley in NW Poland

Abstract

During the Pomeranian phase of the Weichselian glaciation (~17-16 ka), the Toruń-Eberswalde ice-marginal valley (NW Poland and easternmost Germany) drained water from the Pomeranian ice sheet, while intensive aeolian processes took place across Europe in the foreland of the Scandinavian ice sheet (‘European Sand Belt’). The micromorphology of the quartz grains in the Toruń-Eberswalde ice-marginal valley shows no traces of these aeolian processes, or only vague signs of aeolian abrasion. This is unique among the aeolian sediments in other Pleistocene ice-marginal valleys in this part of Europe. The study of the surfaces of the quartz grains shows that the supply of grains by streams from the south was minimal, which must be ascribed to the climate deterioration during the Last Glacial Maximum, which resulted in a decrease of the discharge of these extraglacial rivers to the ice-marginal valley.

Open access