Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M. Tkocz x
Clear All Modify Search
Open access

Z. Cyganek and M. Tkocz

The Effect of AZ31 Alloy Flow Stress Description on the Accuracy of Forward Extrusion FE Simulation Results

Hot compression tests of the AZ31 magnesium alloy, performed for wide ranges of temperature and strain rate, revealed two different flow curve types for the material investigated. At higher strain rates and lower temperatures, flow curves exhibit a distinct peak. At lower strain rates and higher temperatures, flow stress values change less rapidly. This makes it difficult to find a single function able to accurately describe the deformation behaviour of AZ31 alloy in the entire forming range.

The present study discusses an effect of the AZ31 magnesium alloy flow stress description on the accuracy of extrusion force prediction by means of FE simulation. A number of forward extrusion trials were carried out in order to acquire experimental data on AZ31 alloy deformation behavior in various forming conditions. Cylindrical billets of 40 mm in diameter and the tooling were initially heated to temperatures in the range of 200 to 400°C and placed in the working space of the 1500 kN hydraulic press to produce extruded rods of 12 mm in diameter. Numerical models for conducting corresponding extrusion simulations were prepared in Forge 2009 software and the selected form of Hensel-Spittel function was applied for the material flow stress description. Function coefficients were calculated both for the entire forming range of AZ31 alloy as well as for the ranges of parameters specific to a certain extrusion trial conditions. The numerical results were compared to the experimental ones and the accuracy of both approaches were estimated. It was found that the selected flow stress function, determined for the wide ranges of temperature and strain rate, allows to achieves a tis factory accuracy of AZ31 alloy extrusion force prediction by FE simulations.

Open access

J. Rojek, D. Lumelskyy, R. Pęcherski, F. Grosman, M. Tkocz and W. Chorzępa

This paper presents results of experimental studies of forming limit curves (FLC) for sheet forming under complex strain paths. The Nakazima-type formability tests have been performed for the as-received steel blank and for the blank pre-strained by13%. Prestraining leads to abrupt change of strain path in the blank deformation influencing the forming limit curve. The experimental FLC of the pre-strained blank has been compared with the FLC constructed by transformation of the as-received FLC. Quite a good agreement has been found out. The concept of strain-path independent FLCs in polar coordinates has been verified. Two types of the polar diagrams have been considered, the first one with the strain-path angle and effective plastic strain as the polar coordinates, and the second one originally proposed in this work in which the thickness strain has been used instead of the effective plastic strain as one of the polar coordinates. The second transformation based on our own concept has given a better agreement between the transformed FLCs, which allows us to propose this type of polar diagrams as a new strain-path in dependent criterion to predict sheet failure in forming processes.

Open access

L. Cizek, S. Rusz, O. Hilser, R. Śliwa, D. Kuc, T. Tański and M. Tkocz

Abstract

A growing interest in wrought magnesium alloys has been noticed recently, mainly due to development of various SPD (severe plastic deformation) methods that enable significant refinement of the microstructure and – as a result – improvement of various functional properties of products. However, forming as-cast magnesium alloys with the increased aluminum content at room temperature is almost impossible. Therefore, application of heat treatment before forming or forming at elevated temperature is recommended for these alloys. The paper presents the influence of selected heat treatment conditions on the microstructure and the mechanical properties of the as-cast AZ91 alloy. Deformation behaviour of the as-cast AZ61 alloy at elevated temperatures was analysed as well. The microstructure analysis was performed by means of both light microscopy and SEM. The latter one was used also for fracture analysis. Moreover, the effect of chemical composition modification by lithium addition on the microstructure of the AZ31-based alloy is presented. The test results can be helpful in preparation of the magnesium-aluminum alloys for further processing by means of SPD methods.