Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M. Tarnowski x
Clear All Modify Search
Open access

R. Kustosz, I. Altyntsev, M. Darlak, T. Wierzchoń, M. Tarnowski, M. Gawlikowski, M. Gonsior and M. Kościelniak-Ziemniak

Abstract

Constructions of the mechanical-bearingless centrifugal blood pumps utilize different types of non-contact physical bearings, which allows to balance the forces that have an impact on the pump impeller, stabilizing its position in the pump house without wall contact. The paper presents investigations of the hybrid (passive magnetic bearings and hydrodynamic bearings) suspension system for the centrifugal blood pump. Numerical simulations were used to evaluate the hydrodynamic bearing lifting force and magnetic bearing forces interaction. An important aspect of rotor suspension system design was the nominal gap in hydrodynamic bearing area in order to reduce the blood damage risk in this region. The analyses results confirmed that for a small diameter centrifugal pump, the nominal operating hydrodynamic bearing gap could be established within the range from 0.033 to 0.072 mm.

Open access

T. Wierzchoń, E. Czarnowska, J. Morgiel, A. Sowińska, M. Tarnowski and A. Roguska

Abstract

Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography) of the surface of TiN+Ti2N+αTi(N) nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.