Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M. Sugamata x
Clear All Modify Search
Open access

M. Zygmunt-Kiper, L. Błaz and M. Sugamata

Abstract

An Al(Mg)-NiO composite was manufactured using combined mechanical alloying (MA) and powder consolidation methods that yielded well-consolidated and very-fine grained bulk material. Compression tests at 293 K - 773 K revealed high mechanical properties of the material. Preliminary annealing at 823 K/6 h was found to result in the flow stress reduction at 573 K - 773 K. However, the effect of preliminary annealing on the flow stress value was relatively low for Al(Mg)-NiO if comparing to similar tests performed for the Al-NiO composite. Structural observations revealed very-fine grained structure of both as-extruded and annealed Al(Mg)-NiO composites. The chemical reaction between the composite matrix and reinforcements (NiO) at sufficiently high temperatures resulted in fine grains and spinel-type particles’ development. With respect to the similarly produced Al-NiO composite, a magnesium addition was found to intensify chemical reaction between Al(Mg)-based matrix and NiO particles. As result, fine Al3Ni particles were observed in both hot-extruded material and Al(Mg)-NiO samples annealed at 823 K/6 h.

Open access

M. Zygmunt-Kiper, L. Blaz and M. Sugamata

Abstract

Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.

Open access

M. Zygmunt-Kiper, L. Błaż and M. Sugamata

Tested Al-5Co and Al-5Mg-5Co materials were manufactured using a common ingot metallurgy (IM) and rapid solidification (RS) methods combined with mechanical consolidation of RS-powders and hot extrusion procedures. Mechanical properties of as-extruded IM and RS alloys were tested by compression at temperature range 293-773 K. Received true stress vs. true strain curves were typical for aluminum alloys that undergo dynamic recovery at high deformation temperature. It was found that the maximum flow stress value for Al-5Mg-5Co alloy was much higher than that for Al-5Co, both for IM and RS materials tested at low and intermediate deformation temperatures. The last effect results from the solid solution strengthening due to magnesium addition. However, the addition of 5% Mg results also in the reduction of melting temperature. Therefore, the flow stress for Al-5Mg-5Co alloy was relatively low at high deformation temperatures. Light microscopy observations revealed highly refined structure of RS materials. Analytical transmission electron microscopy analyses confirmed Al9Co2 particles development for all tested samples. Fine acicular particles in RS materials, ∽1μm in size, were found to grow during annealing at 823K for 168h. As result, the hardness of RS materials was reduced. It was found that severe plastic deformation due to extrusion and additional compression did not result in the fracture of fine particles in RS materials. On the other hand, large particles observed in IM materials (∽20μm) were not practically coarsened during annealing and related hardness of annealed samples remained practically unchanged. However, processing of IM materials was found to promote the fracture of coarse particles that is not acceptable at industrial processing technologies.